Math, asked by GAURAVSEMWAL1934, 7 months ago

The value of k for which the pair of linear equations 3x+4y+5=0 and 12x+2ky+17=0 has no solution

Answers

Answered by SashikalaAppalla
1

Step-by-step explanation:

hope the above answer will help you

Attachments:
Answered by Anonymous
121

Given :-

\qquad☀Linear pair equations :

  • 3x + 4y + 5 = 0
  • 12x + 2ky + 17 = 0

To Find :-

  • Value of K

Solution :-

\qquad☀We have two linear pair equations :-

  • 3x + 4y + 5 = 0
  • 12x + 2ky + 17 = 0

Where :-

\qquad\quad \pmb  {\mathfrak{a_1 = 3}}

\qquad\quad \pmb  {\mathfrak{b_1 = 4 }}

\qquad\quad \pmb  {\mathfrak{b_2 = 2k}}

\qquad\quad \pmb  {\mathfrak{c_1 = -5}}

\qquad\quad \pmb  {\mathfrak{c_2 = -17}}

Substituting the values :-

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{a_1}{a_2} =\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{a_1}{a_2} =\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2} }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{3}{12} =\dfrac{4}{2k} \neq \dfrac{-5}{-17} }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{3}{12} =\dfrac{4}{2k}  }}\\

\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{3}{12} =\dfrac{4}{2k}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{6k = 48}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{k=\cancel{\dfrac{48}{6}}}}\\

\pink{\qquad\leadsto\quad \pmb  {\mathfrak{k=8}}}\\

\therefore\:\underline{\textsf{Value of k  is  \textbf{ 8 }}}.\\\\

Similar questions