Math, asked by vikrant15321, 9 months ago

The value of k, for which the system of equations x + (k + 1)y = 5 and (k + 1)x + 9y = 8k – 1 has infinitely many solutions is

Answers

Answered by rajeevr06
63

Answer:

For infinite many solution,

 \frac{1}{k + 1}  =  \frac{k + 1}{9}  =  \frac{5}{8k - 1}

solving 3 pair,

 \frac{1}{k + 1}  =  \frac{k + 1}{9}  \:  \: i.e \:  \: (k + 1) {}^{2}  = 9 \:  \: so \:  \: k + 1 = 3 \:  \: or \:  - 3  \:  \:  \: then \:  \:  \: k = 2 \:  \: or \:  - 4

now,

 \frac{k + 1}{9}  =  \frac{5}{8k - 1}  \:  \: i.e \:  \: 8 {k}^{2}  + 7k - 1 = 45 \:  \: i.e \:  \: 8 {k}^{2}  + 7k - 46 = 0 \:  \: i.e \:  \:  \: 8 {k}^{2}  + 23k - 16k  - 46 = 0 \:  \:  \: i.e \:  \: k(8k + 23) - 2(8k + 23) = 0 \:  \:  \:  \: so \:  \:  \: (8k + 23)(k - 2) = 0 \:  \:  \: then \:  \:  \:  \: k = 2 \:  \: or \:  \:  -  \frac{23}{8}

now,

 \frac{1}{k + 1}  =  \frac{5}{8k - 1}  \:  \:  \: i.e \:  \:  \: 8k - 1 = 5k + 5 \:  \:  \: i.e \:  \: 3k = 6 \:  \: then \:  \:  \: k = 2

so common solution is X = 2 Ans.

mark BRAINLIEST if this is helpful to you. Thanks

Answered by daaryan2610
0

Answer:

Step-by-step explanation:

For infinite many solution,

solving 3 pair,

now,

now,

K=2

Similar questions