Math, asked by arvindtutu9988, 9 months ago

The value of K for which (x+1)+4x²+x+1=0 has real and equcal roots

Answers

Answered by XxItzkillergirlXx
4

 \bold{Rewrite \:  your  \: equation:}

 \bold{We \:  have:}

 \rightarrow \: (k+1)x2+2(1−k)x+1=(ax+b)2

 \bold{and  \: we \:  are \:  asked  \: to \:  find \:  k. So:}

 \rightarrow \: a2=k+1a2=k+1

 \rightarrow \: 2ab=2(1−k)2ab=2(1−k)

 \rightarrow \: b2=1,b=±1b2=1,b=±1

 \rightarrow \: ±a=(1−k)±a=(1−k)

 \rightarrow \: a2=(1−k)2=k+1a2=(1−k)2=k+1

Solving (1−k)2=k+1(1−k)2=k+1 has

 \diamond \: k2−2k=kk2−2k=k ,

 \diamond \: k2=3kk2=3k ,

 \diamond \: k=0k=0 ,

 \diamond \: k=3k=3

Plugging in k=0k=0 ,

we have x2+2x+1=(x+1)2x2+2x+1=(x+1)2 .

Plugging in k=3k=3 , we have 4x2−4x+1=(1−2x)2

So the solutions are

 \boxed{k=0,k=3}

Answered by Anonymous
9

 \huge{ \underline{ \bold{ᴀɴsᴡᴇʀ....{ \heartsuit}}}}

Rewriteyourequation:

\bold{We \: have:}Wehave:

\rightarrow \: (k+1)x2+2(1−k)x+1=(ax+b)2→(k+1)x2+2(1−k)x+1=(ax+b)2

\bold{and \: we \: are \: asked \: to \: find \: k. So:}andweareaskedtofindk.So:

\rightarrow \: a2=k+1a2=k+1→a2=k+1a2=k+1

\rightarrow \: 2ab=2(1−k)2ab=2(1−k)→2ab=2(1−k)2ab=2(1−k)

\rightarrow \: b2=1,b=±1b2=1,b=±1→b2=1,b=±1b2=1,b=±1

\rightarrow \: ±a=(1−k)±a=(1−k)→±a=(1−k)±a=(1−k)

\rightarrow \: a2=(1−k)2=k+1a2=(1−k)2=k+1→a2=(1−k)2=k+1a2=(1−k)2=k+1

Solving (1−k)2=k+1(1−k)2=k+1 has

\diamond \: k2−2k=kk2−2k=k ,⋄k2−2k=kk2−2k=k,

\diamond \: k2=3kk2=3k ,⋄k2=3kk2=3k,

\diamond \: k=0k=0 ,⋄k=0k=0,

\diamond \: k=3k=3⋄k=3k=3

Plugging in k=0k=0 ,

we have x2+2x+1=(x+1)2x2+2x+1=(x+1)2 .

Plugging in k=3k=3 , we have 4x2−4x+1=(1−2x)2

So the solutions are

\boxed{k=0,k=3}

k=0,k=3

Similar questions