The value of K for which (x+1)+4x²+x+1=0 has real and equcal roots
Answers
Solving (1−k)2=k+1(1−k)2=k+1 has
Plugging in k=0k=0 ,
we have x2+2x+1=(x+1)2x2+2x+1=(x+1)2 .
Plugging in k=3k=3 , we have 4x2−4x+1=(1−2x)2
So the solutions are
Rewriteyourequation:
\bold{We \: have:}Wehave:
\rightarrow \: (k+1)x2+2(1−k)x+1=(ax+b)2→(k+1)x2+2(1−k)x+1=(ax+b)2
\bold{and \: we \: are \: asked \: to \: find \: k. So:}andweareaskedtofindk.So:
\rightarrow \: a2=k+1a2=k+1→a2=k+1a2=k+1
\rightarrow \: 2ab=2(1−k)2ab=2(1−k)→2ab=2(1−k)2ab=2(1−k)
\rightarrow \: b2=1,b=±1b2=1,b=±1→b2=1,b=±1b2=1,b=±1
\rightarrow \: ±a=(1−k)±a=(1−k)→±a=(1−k)±a=(1−k)
\rightarrow \: a2=(1−k)2=k+1a2=(1−k)2=k+1→a2=(1−k)2=k+1a2=(1−k)2=k+1
Solving (1−k)2=k+1(1−k)2=k+1 has
\diamond \: k2−2k=kk2−2k=k ,⋄k2−2k=kk2−2k=k,
\diamond \: k2=3kk2=3k ,⋄k2=3kk2=3k,
\diamond \: k=0k=0 ,⋄k=0k=0,
\diamond \: k=3k=3⋄k=3k=3
Plugging in k=0k=0 ,
we have x2+2x+1=(x+1)2x2+2x+1=(x+1)2 .
Plugging in k=3k=3 , we have 4x2−4x+1=(1−2x)2
So the solutions are
\boxed{k=0,k=3}
k=0,k=3