the value of K so that the equation 2x^2+kx-5=0 and x^2-3x-4 have one root in common is
Answers
Answered by
28
=x^2-3x-4
=x^2-4x+x-4
=x(x-4) +1(x-4)
=(x-4) (x+1)
x= 4 and -1
2x^2+kx-5=0
x=4
2*4^2+4k-5=0
32-5+4k=0
4k = 27
k = 27/4
or
x = -1
2*1-k-5=0
-k -5+2=0
-k = 3
k = -3
=x^2-4x+x-4
=x(x-4) +1(x-4)
=(x-4) (x+1)
x= 4 and -1
2x^2+kx-5=0
x=4
2*4^2+4k-5=0
32-5+4k=0
4k = 27
k = 27/4
or
x = -1
2*1-k-5=0
-k -5+2=0
-k = 3
k = -3
Answered by
9
- The eq. are 2+kx-5=0 --------(1)
and -3x-4=0 --------(2)
- We will find roots of eq. (2)
-3x-4=0
-4x+x-4=0
(x+1)(x-4)=0
x=-1,4
- Now, if the common root is -1
then putting -1 in eq(1)
2*+k(-1)-5=0
2-5-k=0
k=3
- if the common root is 4
then putting 4 in eq(1)
2*+k(4)-5=0
32+4k-5=0
k=-27/4
Similar questions