Math, asked by Krishali173, 11 months ago

The value of K so that the quadratic equations x^2-2(1+3k)x+7(3+2k)=0 has equal roots.
Please someone help me out ASAP.
Thank you for your help.​

Answers

Answered by tushar1224
8

REFER TO THE ATTACHMENT FOR THE ANSWER

PLEASE MARK IT AS BRAINLIEST

Attachments:
Answered by Anonymous
22

Given equation :

  • - 2(1+3k)x + 7(3+2k) = 0
  • Roots are equal.

To Find :

  • Value of k.

Solution :

Compare the given quadratic equation by the general form of the quadratic equation.

General Form :

  • ax² + bx + c = 0

We now get the values of variable,

  • a = 1
  • b = -2(1+3k) = -2-6k
  • c = 7(3+2k) = 21 + 14k

We know that for roots to be equal, the value of discrimant, D should be equal to zero.

D = - 4a

D = 0

Block in the values,

\sf{0\:=\:b^2-4ac}

\sf{(2+6k)^2\:-\:4(1)(21+14k)}

\sf{\big[Divided\:value\:of\:b\:by\:minus\:\big]}

\sf{0\:=\:2^2\:\:+(\:2\:\times\:2\:\times\:6k)\:+\:6k^2\:-\:4(21+14k)}

\sf{\big[Using\:the\:identity\::(a+b)^2\:=\:a^2\:+\:2ab\:+\:b^2\big]}

\sf{0\:=\:4\:+\:2\:\times\:12k\:+\:36k^2\:-84\:-\:56k}

\sf{0\:=\:4\:+\:24k\:+36k^2-84-56k}

\sf{0\:=\:36k^2\:+\:24k\:-\:56k\:-84+4}

\longrightarrow \sf{0\:=\:36k^2\:-\:32k\:-80}

Divide throughout by 4,

\longrightarrow \sf{0\:=\:9k^2\:-\:8k\:-\:20}

\longrightarrow \sf{0\:=\:9k^2\:-\:18k+10k-20}

\longrightarrow \sf{0=9k(k-2)+10(k-2)}

\longrightarrow \sf{0\:=\:(k-2)(9k+10) }

\longrightarrow \sf{k-2=0\:\:or\:\:9k+10=0}

\longrightarrow \sf{k=2\:\:or\:\:9k=-10}

\longrightarrow \sf{k=2\:\:or\:\:k=\dfrac{-10}{9}}

\large{\boxed{\bold{\purple{Value\:of\:k\:=\:2\:\:or\:\:\dfrac{-10}{9}}}}}

Similar questions