Math, asked by jogishubham200691, 9 days ago

- The value of k such that 2 cosec 30° + k sin^2 60° -3/4 tan^2 30º = 10, is​

Answers

Answered by suhail2070
0

Answer:

k = 11.

Step-by-step explanation:

2 \csc(30)  + k( { \sin(60) }^{2} ) -  \frac{3}{4}  { \tan(30) }^{2}  = 10 \\  \\ 2(2) + k( {( \frac{ \sqrt{3} }{2})) }^{2}  -  \frac{3}{4}  {( \sqrt{3}) }^{2}  = 10 \\  \\ 4 + k \frac{3}{4}  -  \frac{9}{4}  = 10 \\  \\  \frac{16 + 3k - 9}{4}  = 10 \\  \\ 3k + 7 = 40 \\  \\ 3k = 33 \\  \\ k = 11.

Similar questions