Math, asked by Illuminate40, 23 days ago

The value of k such that 3x2+2kx-k-5 has the sum of the zeroes as half of their product is​

Answers

Answered by TanmayStatus
6

 \huge \bf\green{ \boxed{\bf  \orange{Answer}}} \pink \downarrow

 \bf{Let \:  P \: (x) \: = \:  {3x}^{2} \: + \:  2kx \: + \: x \: − \: k \: − \: 5}

 \bf{= \:  {3x}^{2} \: + \: x(2k+1) \: − \: (k \: + \: 5)}

 \bf{i.e;  {ax}^{2}  \: +bx \: + \: c}

 \bf{a \: = \: 3; \: b \: = \: 2k \: + \: 1 \: ; \: c \: = \: − \: (k \: + \: 5)}

 \bf{1)  \: Sum \:  of  \: zeroes  \: = \:  \frac{ - b}{a} \: = \:  \frac{ - (2k + 1)}{3}}

 \bf{2)  \: Product \:  of \:  zeroes \:  = \:  \frac{c}{a} \: = \:  \frac{ - (k + 5)}{3}}

  \huge\bf{According \:  to \:  given }

 \bf{−(2k+1)/3= \frac{1}{2} [−(k+5)/3]}

 \bf{2(2k+1)=k+5}

 \bf{4k+2=k+5}

 \bf{3k=3⇒k=1}

I hope it's helps you.

Please markerd as brainliest answer.

Similar questions