Math, asked by khushi32632, 1 year ago

The value of lim x—pi/2 [xtanx-(pi/2)secx]

Answers

Answered by Sharad001
39

Question :-

 \sf \: find \: the \: value \: of \:  \\ \: \lim_{x \to  \frac{ \pi}{2} } \{x \tan x -  \big( \frac{  \pi}{2}  \big) \sec x \} \:

Answer :-

\boxed{\lim_{x \to  \frac{ \pi}{2} } \{x \tan x -  \big( \frac{  \pi}{2}  \big) \sec x \} \:  =  \frac{  { \pi}^{2} }{4}  -  \frac{1}{2} } \:

Used property :-

 \boxed{ \sf\lim  \frac{ \sin h}{h}  = 1} \\ \boxed{ \sf\lim  \frac{ \tan h}{h}  = 1} \:

Solution :-

 \leadsto \: \lim_{x \to  \frac{ \pi}{2} } \{x \tan x -  \big( \frac{  \pi}{2}  \big) \sec x \} \:  \:  \\  \\  \leadsto \: \lim_{x \to  \frac{ \pi}{2} } \{x \tan x \big(  \frac{x}{x}   \big)-  \big( \frac{  \pi}{2}  \big) \sec x \} \:  \\  \\   \because \:  \sec x =  \frac{1}{ \cos x}   \:  \\  \therefore\\ \leadsto \: \lim_{x \to  \frac{ \pi}{2} } \{ {x}^{2}  \big(  \frac{ \tan x}{x}   \big)-  \big( \frac{  \pi}{2}  \big)  \frac{1}{ \cos x}  \} \:  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \because \:  \:  \boxed{ \sf\lim  \frac{ \tan h}{h}  = 1} \: \:  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{\sin( \frac{ \pi}{2}   +  \theta) =  \cos  \theta}\\ \therefore  \\  \leadsto \: \lim_{x \to  \frac{ \pi}{2} } \{ {x}^{2} -  \big( \frac{  \pi}{2}  \big)  \frac{1}{ \sin( \frac{ \pi}{2}   + x)}  \} \:  \\  \\  \leadsto \:  \lim_{x \to  \frac{ \pi}{2} } \{ {x}^{2} -  \big( \frac{  \pi}{2}  \big)  \frac{1}{ \sin( \frac{ \pi}{2}   + x)}  \bigg( \frac{ \frac{ \pi}{2} + x }{  \frac{ \pi}{2} + x }  \bigg) \} \: \:  \\  \\  \leadsto \:  \lim_{x \to  \frac{ \pi}{2} } \{ {x}^{2} -  \big( \frac{  \pi}{2}  \big)  \frac{1}{ ( \frac{ \pi}{2}   + x)}  \} \: \:  \\  \\  \leadsto \: \lim_{x \to  \frac{ \pi}{2} } \{ {x}^{2} -    \frac{ \pi}{ ( \pi  + 2x)}  \} \:  \\  \\  \mathbb{Taking  \: Limit  \: } \\  \\  \leadsto \:  { \bigg( \frac{ \pi}{2}  \bigg)}^{2}  -  \frac{ \pi}{ \pi  +  \pi}   \\  \\   \leadsto \:  \frac{ { \pi}^{2} }{4} -  \frac{1}{2}   \\  \\  \boxed{\lim_{x \to  \frac{ \pi}{2} } \{x \tan x -  \big( \frac{  \pi}{2}  \big) \sec x \} \:  =  \frac{  { \pi}^{2} }{4}  -  \frac{1}{2}}

Similar questions