Math, asked by aadil004, 4 months ago

the value of lim x to 2 x^5 -32/x^2-4​

Answers

Answered by Anonymous
7

 \bf{Given}

 \tt \to \displaystyle \lim _{ \tt \: x \to2}  \tt\frac{ {x}^{5}  - 32}{ {x}^{2}  - 4}

 \bf \: Now \: check \: the \: form \: of \: limit \: so \: put \: x = 2

 \tt \to  \dfrac{(2) {}^{5}  - 32}{(2)^{2}  - 4}  =  \dfrac{0}{0}

 \bf \: So \: it \: is \:  \dfrac{0}{0}  \: form \: now \: we \: use \: L'hospital \: rule

 \bf \: Differentiate \: W.R.T \:  x  \: on \:  both \:  numerator \:  and  \: denominator </p><p>

 \tt \to \:  \displaystyle \:   \lim_{ \tt \: x \to 2}  \tt\frac{ \dfrac{d( {x}^{5} - 32) }{dx} }{ \dfrac{d( {x}^{2}  - 4)}{dx} }

 \tt \to \displaystyle \lim _{ \tt \: x \to2}  \tt\frac{5 {x}^{4} }{2x}

 \bf \: Now \: put \: x = 2

 \tt \to \dfrac{5 {x}^{3} }{2}  =  \dfrac{5(2)^{3} }{2}

 \tt \to \: 5(2) {}^{2}  = 5 \times 4 = 20

 \bf \: Answer

 \tt  = 20

 \bf \:  \underline{Some \:Formula  \: of \: Differentiation }</p><p>

 \tt \to \:  \dfrac{d {x}^{n}}{dx}  = nx ^{n - 1}

 \tt \to \:  \dfrac{d(2)}{dx}  = 0

 \tt \to \:  \dfrac{d( {e}^{x}) }{dx}  =  {e}^{x}

 \tt \to \:  \dfrac{d(lnx)}{dx}  =  \dfrac{1}{x}

 \tt \to \dfrac{d(sinx)}{dx}  = cosx

 \tt \to \:  \dfrac{d(cosx)}{dx}  =  - sinx

 \tt \to \:  \dfrac{d(tanx)}{dx} = sec {}^{2} x

Answered by TheBrainlyStar00001
261

TO SOLVE.

  •  \\   \\ : \implies  \displaystyle \lim  _ {  \:  \: \tt \: x \to2} \tt(\frac{ {x}^{5} - 32}{ {x}^{2} - 4})\\\\

EXPLANATION.

\\\\ \frak{ \underbrace{ \underline{    \:  \: \:Firstly ,\:  \:  \:  put   \: \: \: \boxed{ \bold x}, \:  \:  \:  }}}\\\\

  •  \  \\ \tt  : \implies \dfrac{(2) {}^{5} - 32}{(2)^{2} - 4} = \dfrac{0}{0}\\\\

 \\  \\ \frak{ \underbrace{ \underline{  \: Secondly,\: use \: \bf{ \: L'hospital \: rule,    }}}}\\\\

\frak{ \underbrace{ \underline{ Thirdly,\: differentiate \:  \bf \: W.R.T \:   x \:  \frak{on \: both \: numerator \: and \: denominator,}}}}\\\\

\sf  : \implies \: \displaystyle \: \lim_{ \tt \: x \to 2}  \: \sf(\frac{ \dfrac{d( {x}^{5} - 32) }{dx} }{ \dfrac{d( {x}^{2} - 4)}{dx} })\\\\

\sf  : \implies \displaystyle \lim _{  \: \tt \: x \to2} \tt(\frac{5 {x}^{4} }{2x})\\\\

\frak{ \underbrace{ \underline{ \: Fourthly, \: put \:  \boxed{ \bf \: x = 2}}}}\\\\

\sf  : \implies \dfrac{5 {x}^{3} }{2} = \dfrac{5(2)^{3} }{2}\\\\

\underline{\boxed{\frak{: \implies \: 5(2) {}^{2} = 5 \times 4 = 20}}}\\\\

  \underline{\overbrace{ \bf \therefore, \:  \sf the \: value \: of \:   \longmapsto \displaystyle \lim  _ {  \:  \: \tt \: x \to2} \tt(\frac{ {x}^{5} - 32}{ {x}^{2} - 4}) \:   \: \sf is \:  \bf \: 20.}} \\  \\  \\

✬ Hope it helps u ✬

Similar questions