Math, asked by harshitha0328, 4 months ago

The value of limit Limx→0 {sin (a + x) – sin (a – x)}/x is​

Answers

Answered by mathdude500
10

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

 \large \boxed{ \red{\tt :  ⟼\lim_{x\to 0}\dfrac{sinx}{x}  \:  = 1}}

 \large \boxed{ \green{\tt :  ⟼sinx \:  - siny \:  = 2cos(\dfrac{x + y}{2} )sin(\dfrac{x - y}{2} )}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\tt :  ⟼\lim_{x\to 0} \: \dfrac{sin(a + x) - sin(a - x)}{x}

☆ On substituting directly x = 0, we get indeterminant form

\tt :  ⟼ \: \lim_{x\to 0}\dfrac{2cos \bigg(\dfrac{a + x + a - x}{2}  \bigg) \: sin\bigg(\dfrac{a + x - a + x}{2}  \bigg)}{x}

\tt :  ⟼ \: 2 \: \lim_{x\to 0}\dfrac{cos\bigg(\dfrac{2a}{2}  \bigg)sin\bigg(\dfrac{2x}{2}  \bigg)}{x}

\tt :  ⟼ \: 2\lim_{x\to 0} \: \dfrac{cosa \: sinx}{x}

\tt :  ⟼ \: 2 \: cosa \: \lim_{x\to 0} \: \dfrac{sinx}{x}

\tt :  ⟼ \: 2 \: cosa \:  \times 1

\tt :  ⟼ \: 2 \: cosa

 \boxed{ \red{\bf \: Hence \: \tt :  ⟼\lim_{x\to 0} \: \dfrac{sin(a + x) - sin(a - x)}{x}  = 2cosa}}

Answered by sachinghimire162
2

Answer:

(c) 2 cosa

Step-by-step explanation:

Given, Limx→0 {sin (a + x) – sin (a – x)}/x

= Limx→0 {2 × cos a × sin x}/x

= 2 × cos a × Limx→0 sin x/x

= 2 cos a

Similar questions