Math, asked by aalakshmidevi, 7 months ago

the value of limited x to 0 sin7x+sin5x÷tan5x-tan2x is​

Answers

Answered by MaheswariS
5

\underline{\textsf{To find:}}

\textsf{The value of}

\mathsf{\displaystyle\lim_{x\to\;0}\;\dfrac{sin7x+sin5x}{tan5x-tan2x}}

\underline{\textsf{Solution:}}

\mathsf{Consider,}

\mathsf{\displaystyle\lim_{x\to\;0}\;\dfrac{sin7x+sin5x}{tan5x-tan2x}}

\mathsf{when\;applying\;limits\;we\;get\;\dfrac{0}{0}\;form}

\mathsf{By\;L\;Hopital,s\;rule}

\mathsf{=\displaystyle\lim_{x\to\;0}\;\dfrac{7\;cos7x+5\;cos5x}{5\;sec^25x-2\;sec^22x}}

\mathsf{=\dfrac{7\;cos0+5\;cos0}{5\;sec^20-2\;sec^20}}

\mathsf{=\dfrac{7(1)+5(1)}{5(1)-2(1)}}

\mathsf{=\dfrac{7+5}{5-2}}

\mathsf{=\dfrac{12}{3}}

\mathsf{=4}

\therefore\boxed{\mathsf{\displaystyle\lim_{x\to\;0}\;\dfrac{sin7x+sin5x}{tan5x-tan2x}=4}}

\underline{\textsf{Find more:}}

Lim. 8x³-1 / 16x4-1

x--->1/2

https://brainly.in/question/6423235

Lt x=0 (cos7X-cos9X)/(cosX-cos5X)

https://brainly.in/question/6057974

Limit x tends to 1

[(x-2/x^2-x)-1/x^3-3x^2+2x)]

https://brainly.in/question/5187782

Answered by pulakmath007
17

SOLUTION :-

TO DETERMINE :-

\displaystyle \sf{ \lim_{x \to 0} \:  \:  \frac{ \sin 7x +  \sin 5x}{ \tan 5x -  \tan 2x}}

EVALUATION :-

\displaystyle \sf{ \lim_{x \to 0} \:  \:  \frac{ \sin 7x +  \sin 5x}{ \tan 5x -  \tan 2x}}

 = \displaystyle \sf{ \lim_{x \to 0} \:  \:  \frac{2 \sin  \big(  \frac{7x + 5x}{2} \big) \cos  \big(  \frac{7x  -  5x}{2} \big) }{  \frac{ \sin 5x}{ \cos 5x}  -   \frac{ \sin 2x}{ \cos 2x} }}

 = \displaystyle \sf{ \lim_{x \to 0} \:  \:  \frac{2 \sin 6x \cos x }{  \frac{ \sin 5x\cos 2x - \cos 5x  \sin 2x}{ \cos 5x\cos 2x}   }}

 = \displaystyle \sf{ \lim_{x \to 0} \:  \:  \frac{2 . 2 \sin 3x .  \cos 3x \cos x }{  \frac{ \sin (5x - 2x) }{ \cos 5x\cos 2x}   }}

 = \displaystyle \sf{ \lim_{x \to 0} \:  \:  \frac{4 \sin 3x \cos 3x \cos x \cos 5x\cos 2x }{  { \sin 3x }  }}

 = \displaystyle \sf{ \lim_{x \to 0} \:  \:  {4   \cos 3x \cos x \cos 5x \cos 2x}}

 = \displaystyle \sf{  \:  \:  {4   \cos 0.\cos 0. \cos 0 .\cos 0}}

 = \displaystyle \sf{ 4 \times 1 \times 1 \times 1 \times 1}

 =   \displaystyle \sf{4}

FINAL ANSWER :-

 \boxed{ \:  \boxed{ \:  \: \displaystyle \sf{ \lim_{x \to 0} \:  \:  \frac{ \sin 7x +  \sin 5x}{ \tan 5x -  \tan 2x} = 4 \:  \: }} \:}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Cos^-1(1-9^x/1+9^x) differentiate with respect to x

https://brainly.in/question/17839008

2. General solution of dy/dx -3y =sin2x

https://brainly.in/question/24725748

Similar questions