Math, asked by subodhweb8401, 3 months ago

The value of limx →0 log sin 2x / logx is​

Answers

Answered by mathdude500
2

Basic Concept :-

L'Hospital's Rule

  • It is used to solve the limits when we have an meaningless or indeterminate form 0/0 or ∞/∞ , then differentiate the numerator and differentiate the denominator independently and then take the limit if indeterminant form is removed otherwise repeat the process till indeterminant form is removed.

Formula used :-

\blue{\boxed{\sf\:\dfrac{d}{dx}logx = \dfrac{1}{x}}}

\blue{\boxed{\sf\:\dfrac{d}{dx}sinx = cosx}}

\blue{\boxed{\sf\:\dfrac{d}{dx}x = 1}}

\blue{\boxed{\sf \: \displaystyle \lim_{x \to \: 0} \tt \: \dfrac{tanx}{x} = 1}}

Let's solve the problem now!!

\rm :\longmapsto\: \displaystyle \lim_{x \to \: 0} \tt \: \dfrac{log \: sin2x}{log \: x}

On directly Substitute the value of x = 0, we get

\rm :\longmapsto\:   \: =  \: \tt \: \dfrac{log \: sin(2 \times 0)}{log \: 0}

\rm :\longmapsto\:   \: =  \: \tt \: \dfrac{log \:0}{ \infty }

\rm :\longmapsto\:   \: =  \: \tt \: \dfrac{ \infty }{ \infty }

Its an indeterminant form,

So,

By applying L - Hospital Rule, we get

\rm :\longmapsto\: \displaystyle \lim_{x \to \: 0} \tt \: \dfrac{\dfrac{d}{dx} \: log \: sin2x}{\dfrac{d}{dx} \: log \: x}

 \rm \:  =  \: \displaystyle \lim_{x \to \: 0} \tt \: \dfrac{\dfrac{1}{sin \: 2x} \dfrac{d}{dx} \: sin2x}{\dfrac{1}{x} }

 \rm \:  =  \: \displaystyle \lim_{x \to \: 0} \tt \: \dfrac{\dfrac{1}{sin \: 2x} \: cos \: 2x \: \dfrac{d}{dx} \: 2x}{\dfrac{1}{x} }

 \rm \:  =  \:  \: \displaystyle \lim_{x \to \: 0} \tt \: \dfrac{cot2x \:  \times  \: 2}{\dfrac{1}{x} }

 \rm \:  =  \:  \: \displaystyle \lim_{x \to \: 0} \tt \: \dfrac{2x}{tan \: 2x}

 \rm \:  =  \:  \: 1

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \purple{\underbrace{\pink{\boxed{ \bf\: \displaystyle \lim_{x \to \: 0} \tt \: \dfrac{log \: sin2x}{log \: x} = 1}}}}

Additional Information :-

\blue{\boxed{\sf \: \displaystyle \lim_{x \to \: 0} \tt \: \dfrac{sinx}{x} = 1}}

\blue{\boxed{\sf \: \displaystyle \lim_{x \to \: 0} \tt \: \dfrac{log(1 + x)}{x} = 1}}

\blue{\boxed{\sf \: \displaystyle \lim_{x \to \: 0} \tt \: \dfrac{ {e}^{x}  - 1}{x} = 1}}

\blue{\boxed{\sf \: \displaystyle \lim_{x \to \: 0} \tt \: \dfrac{ {a}^{x}  - 1}{x} =  log(a)}}

Similar questions