The value of log°1.2bar to the base 3/4
Answers
Answer:
Welcome to Gboard clipboard, any text that you copy will be saved here.Welcome to Gboard clipboard, any text that you copy will be saved here.Welcome to Gboard clipboard, any text that you copy will be saved here.Welcome to Gboard clipboard, any text that you copy will be saved here.Welcome to Gboard clipboard, any text that you copy will be saved here.
Answer:
Step-by-step explanation:
1,2618595071
Step-by-step explanation:
If you have enough time and like to solve artithmetical operations, you can begun with any fair approximation.
For example: 318=387,420,489≃4×108318=387,420,489≃4×108 .
And 321=10,460,353,203≃1010321=10,460,353,203≃1010 .
By taking base 10 logarithm on both sides:
318log31818log31818log34≃4×108≃log4×108≃8+log4≃8log3+log4log3≃8⋅2110+log34≃18−16810=1,2321log32121log3log3≃1010≃log1010≃10≃1021318≃4×108321≃1010log318≃log4×108log321≃log101018log3≃8+log421log3≃1018≃8log3+log4log3log3≃102118≃8⋅2110+log34log34≃18−16810=1,2
Now. Remember that x=log34x=log34 means that 3x=43x=4 . We need to improve our precision.
Let’s take x=x0+dx0x=x0+dx0 , where x0x0 is a good approximation of xx , and dx0dx0 is the error. Then:
3x0+dx0=3x0⋅3dx03dx01+dx0ln3dx0ln3dx0=4=43x0≃43x0≃43x0−1=4−3x03x0≃4−3x03x0ln3if dx0≃0, then 3dx0≃1+dx0ln33x0+dx0=3x0⋅3dx0=43dx0=43x0if dx0≃0, then 3dx0≃1+dx0ln31+dx0ln3≃43x0dx0ln3≃43x0−1=4−3x03x0dx0≃4−3x03x0ln3
We still need ln3ln3 , for which we take the approximation 33=27≃10e33=27≃10e , and therefore:
333log333−2110ln3=log3loge≃10e≃1+loge≃1log3+logelog3≃logelog3≃10933≃10e3log3≃1+loge3≃1log3+logelog33−2110≃logelog3ln3=log3loge≃109
So, in our formula, we get that:
dx0≃0.94−3x03x0dx0≃0.94−3x03x0
You can try several times.
If you begin with x0=1.2x0=1.2 and you keep iterating: dxn=0.94–3xn3xndxn=0.94–3xn3xn , and xn+1=xn+dxnxn+1=xn+dxn , then we can have the series
x0x1x2x3x4x5x6=1.2=1.2632898741=1.2618767079=1,2618597008=1,2618595093=1,2618595072=1,2618595071x0=1.2x1=1.2632898741x2=1.2618767079x3=1,2618597008x4=1,2618595093x5=1,2618595072x6=1,2618595071
This is a very good approximation