Math, asked by laxman792, 2 months ago

The value of log°1.2bar to the base 3/4

Answers

Answered by munnammatolanur
1

Answer:

Welcome to Gboard clipboard, any text that you copy will be saved here.Welcome to Gboard clipboard, any text that you copy will be saved here.Welcome to Gboard clipboard, any text that you copy will be saved here.Welcome to Gboard clipboard, any text that you copy will be saved here.Welcome to Gboard clipboard, any text that you copy will be saved here.

Answered by rkbedramatic1234
0

Answer:

Step-by-step explanation:

1,2618595071

Step-by-step explanation:

If you have enough time and like to solve artithmetical operations, you can begun with any fair approximation.

For example: 318=387,420,489≃4×108318=387,420,489≃4×108 .

And 321=10,460,353,203≃1010321=10,460,353,203≃1010 .

By taking base 10 logarithm on both sides:

318log31818log31818log34≃4×108≃log4×108≃8+log4≃8log3+log4log3≃8⋅2110+log34≃18−16810=1,2321log32121log3log3≃1010≃log1010≃10≃1021318≃4×108321≃1010log⁡318≃log⁡4×108log⁡321≃log⁡101018log⁡3≃8+log⁡421log⁡3≃1018≃8log⁡3+log⁡4log⁡3log⁡3≃102118≃8⋅2110+log3⁡4log3⁡4≃18−16810=1,2

Now. Remember that x=log34x=log3⁡4 means that 3x=43x=4 . We need to improve our precision.

Let’s take x=x0+dx0x=x0+dx0 , where x0x0 is a good approximation of xx , and dx0dx0 is the error. Then:

3x0+dx0=3x0⋅3dx03dx01+dx0ln3dx0ln3dx0=4=43x0≃43x0≃43x0−1=4−3x03x0≃4−3x03x0ln3if dx0≃0, then 3dx0≃1+dx0ln33x0+dx0=3x0⋅3dx0=43dx0=43x0if dx0≃0, then 3dx0≃1+dx0ln⁡31+dx0ln⁡3≃43x0dx0ln⁡3≃43x0−1=4−3x03x0dx0≃4−3x03x0ln⁡3

We still need ln3ln⁡3 , for which we take the approximation 33=27≃10e33=27≃10e , and therefore:

333log333−2110ln3=log3loge≃10e≃1+loge≃1log3+logelog3≃logelog3≃10933≃10e3log⁡3≃1+log⁡e3≃1log⁡3+log⁡elog⁡33−2110≃log⁡elog⁡3ln⁡3=log⁡3log⁡e≃109

So, in our formula, we get that:

dx0≃0.94−3x03x0dx0≃0.94−3x03x0

You can try several times.

If you begin with x0=1.2x0=1.2 and you keep iterating: dxn=0.94–3xn3xndxn=0.94–3xn3xn , and xn+1=xn+dxnxn+1=xn+dxn , then we can have the series

x0x1x2x3x4x5x6=1.2=1.2632898741=1.2618767079=1,2618597008=1,2618595093=1,2618595072=1,2618595071x0=1.2x1=1.2632898741x2=1.2618767079x3=1,2618597008x4=1,2618595093x5=1,2618595072x6=1,2618595071

This is a very good approximation

Similar questions