Math, asked by samcorbett986, 1 year ago

The value of (loga n) / (logab n) is given by:

Answers

Answered by pavithrak1947
49

I have attached answer. Hope it helps.

Attachments:
Answered by InesWalston
13

Answer-

\frac{\log_a n}{\log_{ab} n}=1+\log_a b}

Solution-

The given expression is,

\frac{\log_a n}{\log_{ab} n}

From base change formula we know that,

\log_y x=\frac{\log_z x}{\log_z y}

Applying the same, taking the common base as 'e'

\Rightarrow \frac{\log_a n}{\log_{ab} n}=\frac{\frac{\log_e n}{\log_e a}}{\frac{\log_e n}{\log_e ab}}

\Rightarrow \frac{\log_a n}{\log_{ab} n}=\frac{\log_e n}{\log_e a}\times \frac{\log_e ab}{\log_e n}

\Rightarrow \frac{\log_a n}{\log_{ab} n}=\frac{\log_e ab}{\log_e a}

From properties of logarithms, we know that,

\log xy=\log x+\log y

So,

\Rightarrow \frac{\log_a n}{\log_{ab} n}=\frac{\log_e a+\log_e b}{\log_e a}

\Rightarrow \frac{\log_a n}{\log_{ab} n}=\frac{\log_e a}{\log_e a}+\frac{\log_e b}{\log_e a}

\Rightarrow \frac{\log_a n}{\log_{ab} n}=1+\frac{\log_e b}{\log_e a}

Applying reverse of base change formula,

\Rightarrow \frac{\log_a n}{\log_{ab} n}=1+\log_a b}


Similar questions