The value of m^2 + 1/m^2 = 3, then what will be the value of m^8 + 1/m^?
pls answer the above question, it's my practice paper question
Answers
Step-by-step explanation:
Corrected Question:-
If m²+(1/m²) = 3 then find the value of m⁸+(1/m⁸) ?
Given :-
m²+(1/m²) = 3
To find :-
The value of m⁸+(1/m⁸)
Solution :-
Given that m²+(1/m²) = 3
On squaring both sides then
=> [m²+(1/m²)]²= 3²
=> (m²)²+(1/m²)²+2(m²)(1/m²) = 3×3
Since, (a+b)² = a²+2ab+b²
Where , a = m² and b = 1/m²
=> m⁴+(1/m⁴)+2(m²/m²) = 9
=> m⁴+(1/m⁴)+2(1) = 9
=> m⁴+(1/m⁴)+2 = 9
=> m⁴+(1/m⁴) = 9 -2
=> m⁴+(1/m⁴) = 7
On squaring both sides again then
=> [m⁴+(1/m⁴)]² = 7²
=> (m⁴)²+(1/m⁴)²+2(m⁴)(1/m⁴) = 7×7
Since, (a+b)² = a²+2ab+b²
Where , a = m⁴ and b = 1/m⁴
=> m⁸+(1/m⁸)+2(m⁴/m⁴) = 49
=> m⁸+(1/m⁸)+2(1) = 49
=> m⁸+(1/m⁸)+2 = 49
=> m⁸+(1/m⁸) = 49-2
Therefore, m⁸+(1/m⁸) = 47
Answer :-
The value of m⁸+(1/m⁸) is 47
Used formulae:-
→ (a+b)² = a²+2ab+b²
Answer:
m⁸ + 1/m⁸ = 47
Step-by-step explanation:
Given :-
To Find :-
Solution :-
Given,
m² + 1/m² = 3
On squaring both sides
(m² + 1/m²)² = (3)²
We know that
(a + b)² = a² + b² + 2ab
(m²)² + (1/m²)² + 2 × m² × 1/m² = 9
Since
m⁴ + 1/m⁴ + 2 × m²/m² = 9
m⁴ + 1/m⁴ + 2 = 9
m⁴ + 1/m⁴ = 9 - 2
m⁴ + 1/m⁴ = 7
Again squaring both sides
(m⁴ + 1/m⁴)² = (7)²
(m⁴)² + (1/m⁴)² + 2 × m⁴ + 1/m⁴ = 49
m⁸ + 1/m⁸ + 2 × m⁴/m⁴ = 49
m⁸ + 1/m⁸ + 2 = 49
m⁸ + 1/m⁸ = 49 - 2
m⁸ + 1/m⁸ = 47