Math, asked by rajdivya154, 1 year ago

The value of root(17+ 4 root13) - root(17 - 4 root13) is
(A) 2
(C) 4
(B) 3
(D) 5​

Answers

Answered by pulakmath007
3

SOLUTION

TO CHOOSE THE CORRECT OPTION

The value of

 \sf{ \sqrt{17 + 4 \sqrt{13} }   -  \sqrt{17 - 4 \sqrt{13} } }

(A) 2

(B) 3

(C) 4

(D) 5

EVALUATION

Here the given expression is

 \sf{ \sqrt{17 + 4 \sqrt{13} }   -  \sqrt{17 - 4 \sqrt{13} } }

We solve it as below

 \sf{ \sqrt{17 + 4 \sqrt{13} }   -  \sqrt{17 - 4 \sqrt{13} } }

 \sf{ =  \sqrt{13 + 4 + 4 \sqrt{13} }   -  \sqrt{13 + 4- 4 \sqrt{13} } }

 \sf{ =  \sqrt{ {( \sqrt{13} )}^{2} +  {2}^{2} + 2 \times  \sqrt{13}  \times 2}   -  \sqrt{ {( \sqrt{13} )}^{2} +  {2}^{2}  -  2 \times  \sqrt{13}  \times 2}}

 \sf{ =  \sqrt{ {( \sqrt{13}  + 2)}^{2} }   -  \sqrt{ {( \sqrt{13}  - 2)}^{2} }}

 \sf{ =  ( \sqrt{13}  + 2)  -  ( \sqrt{13}  - 2)}

 \sf{ =   \sqrt{13}  + 2  -   \sqrt{13}   +  2}

 \sf{ =  4}

FINAL ANSWER

Hence the correct option is (C) 4

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

2. the order of the surd 7√8

https://brainly.in/question/31962770

Similar questions