Math, asked by mpmahor, 8 months ago

The value of √sec^2 theta -1 =​

Answers

Answered by InaayaImam
0

Answer:

Divide the terms on the numerator by

sec

2

θ

sec

θ

1

sec

2

θ

=

sec

2

θ

sec

2

θ

1

sec

2

θ

and 'simplifying' :

1

cos

2

θ

=

sin

2

θ

Answered by abhijattiwari1215
0

Answer:

The value of √( sec²θ - 1 ) is tan θ .

Step-by-step explanation:

Given that :

 \sqrt{ ( { \sec}^{2}θ - 1)  }

Solution :

  • We know that, sec θ = 1/cos θ.
  • Putting this in above equation, we get;

 \sqrt{ \frac{1}{ {  \cos  }^{2}θ } - 1 }  =  \sqrt{ \frac{1 -   { \cos  }^{2}θ }{ { \cos }^{2} θ} }  \\ also \:  \:  \:  \:  \:  { \sin }^{2}θ  +  { \cos}^{2}θ  = 1 \\ or \:  \:  \: 1 -  { \cos }^{2} θ =  { \sin }^{2}θ \\ putting \: this \: value \: we \: get \\  \sqrt{ \frac{ { \sin }^{2}θ}{ { \cos }^{2}θ} }  =  \sqrt{ { \tan}^{2}θ}  =  \tan(θ)

  • Hence, √( sec²θ - 1 ) = tan θ .
Similar questions