Math, asked by TbiaSupreme, 1 year ago

The value of sec[tan⁻¹(b+a/b-a)- tan⁻¹(a/b)] is......,Select Proper option from the given options.
(a) 1
(b) √2
(c) 2
(d) 4

Answers

Answered by babundrachoubay123
0

Answer:

\sqrt{2}

Step-by-step explanation :

In this question

sec[tan^{-1}{\frac{b+a}{b-a}} - tan^{-1}{\frac{a}{b}]

property tan^{-1}{x} - tan^{-1}{y} = tan^{-1}\frac{x-y}{1+xy}

We have been given that

x = \frac{b+a}{b-a} and y = \frac{a}{b}

so we put the value of x and y,

\implies sec[tan^{-1}{\frac{b+a}{b-a}} - tan^{-1}{\frac{a}{b}}] = sec[tan^{-1}\frac{\frac{b+a}{b-a}-\frac{a}{b}}{1+(\frac{b+a}{b-a})\frac{a}{b}}]

\implies sec[tan^{-1}\frac{\frac{b^2+ab-ab+a^2}{b^2-ab}}{\frac{b^2-ab+ab+a^2}{b^2-ab}}]

\implies[tex] [tex]sec[tan^{-1}(1)]

Therefore, tan^{-1}(1) = 45°

So, sec45° = √2

Hence, value of sec[tan^{-1}{\frac{b+a}{b-a}} - tan^{-1}{\frac{a}{b}}] = sec45° = √2

So, option (b) is right.

Answered by pulakmath007
13

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO DETERMINE

 \displaystyle \sf{ \sec \bigg [ { \tan}^{ - 1}    \bigg(  \frac{b + a}{b - a} \bigg) -  { \tan}^{ - 1}    \bigg(  \frac{a}{b} \bigg) \bigg] \: \: }

CALCULATION

NOW

 \displaystyle \sf{  \bigg [ { \tan}^{ - 1}    \bigg(  \frac{b + a}{b - a} \bigg) -  { \tan}^{ - 1}    \bigg(  \frac{a}{b} \bigg) \bigg] \: \: }

 =  \displaystyle \sf{  \bigg [ { \tan}^{ - 1}    \bigg(  \frac{1 +  \frac{a}{b} }{1 -  \frac{a}{b} } \bigg) -  { \tan}^{ - 1}    \bigg(  \frac{a}{b} \bigg) \bigg] \: \: }

 \displaystyle \:  \:  \:  \sf{Let  \:  \:  \frac{a}{b}  = \tan \theta } \:   \:  \: \: so \: that \:  \:  \: \theta =  { \tan}^{ - 1}  \bigg(\frac{a}{b} \bigg)

So

 \displaystyle \sf{  \bigg [ { \tan}^{ - 1}    \bigg(  \frac{b + a}{b - a} \bigg) -  { \tan}^{ - 1}    \bigg(  \frac{a}{b} \bigg) \bigg] \: \: }

 =  \displaystyle \sf{  \bigg [ { \tan}^{ - 1}    \bigg(  \frac{1 +  \frac{a}{b} }{1 -  \frac{a}{b} } \bigg) -  { \tan}^{ - 1}    \bigg(  \frac{a}{b} \bigg) \bigg] \: \: }

 =  \displaystyle \sf{  \bigg [ { \tan}^{ - 1}    \bigg(  \frac{1 +  \tan \theta}{1 -   \tan \theta} \bigg) -  { \tan}^{ - 1}    \bigg(   \tan \theta\bigg) \bigg] \: \: }

 =  \displaystyle \sf{  \bigg [ { \tan}^{ - 1}    \bigg(  \frac{ \tan \frac{\pi}{4}  +  \tan \theta}{1 - \tan \frac{\pi}{4}  \tan \theta} \bigg) -  { \tan}^{ - 1}    \bigg(   \tan \theta\bigg) \bigg] \: \: }

 =  \displaystyle \sf{  \bigg [ { \tan}^{ - 1}     \tan\bigg(  \frac{\pi}{4}  +  \theta \bigg) -  { \tan}^{ - 1}    \bigg(   \tan \theta\bigg) \bigg] \: \: }

 =  \displaystyle \sf{  \bigg [\bigg(  \frac{\pi}{4}  +  \theta \bigg) -       \theta\bigg] \: \: }

 =  \displaystyle \sf{  \frac{\pi}{4}  \: \: }

RESULT

 \displaystyle \sf{ \sec \bigg [ { \tan}^{ - 1}    \bigg(  \frac{b + a}{b - a} \bigg) -  { \tan}^{ - 1}    \bigg(  \frac{a}{b} \bigg) \bigg] \: \: }

  = \displaystyle \sf{ \sec  \frac{\pi}{4}  \: \: }

 =  \sf{  \sqrt{2} \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find value of (1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

Similar questions