Math, asked by lalitaminj63, 1 month ago

the value of sin^2 29° + sin^2 61° is

.
.??​

Answers

Answered by EuphoricBunny
7

\tt  \huge{\underline{\underline{\orange{answer :  - }}}} \\   \\  \tt \: the \:  \: value \:  \: of \:  \: sin ^{2}29 \degree \:  +  \: sin ^{2} 61\degree \: \:  is \: \:  \huge  {\underline \orange { \:  \: 1 \:  \: } } \\ \\  \\   \\  \\   \tt  \huge {\underline{\underline{\orange{solution :  - }}}} \\   \\ \\ \blue{  \sin^{2} 29 \degree \:  +  \: \sin^{2}61\degree} \\  \\ \tt\blue{   = ( \sin29\degree)^{2}   \: \:   +  \: \:  \sin^{2}61\degree  } \\  \\  \tt\blue{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  [ \sin (90\degree - 61\degree)]^{2}  \:  +  \:  \sin ^{2} 61\degree} \:  \:  \: \:  \:   \:  \:  \tt \red{\:   [   \sin(90\degree -  θ ) =cos \: θ\: ]} \\  \\   \:  \:  \: \tt \red{  =  \:  \cos \: 61\degree \:  +  \: sin^{2} 61\degree }  \\  \\ \tt \red{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:   =  \: \cos ^{2} 61 \degree\:  +  \: sin^{2}61\degree } \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:   \:  \tt \gray  { \:  [\sin ^{2} θ \:  +  \:  \cos ^{2}  θ \:  =  \: 1]} \\  \\  \tt \gray{   \huge \:  = 1} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Answered by shardakuknaa
1

Answer:

thevalueofsin

2

29°+sin

2

61°is

1

solution:−

sin

2

29°+sin

2

61°

=(sin29°)

2

+sin

2

61°

=[sin(90°−61°)]

2

+sin

2

61°[sin(90°−θ)=cosθ]

=cos61°+sin

2

61°

=cos

2

61°+sin

2

61°[sin

2

θ+cos

2

θ=1]

=1

Similar questions