The value of sin^2 75° - sin^2 15° is
Answers
Answered by
3
Solution:
sin²75° - sin²15°
It can be written as
sin75° = sin(30° + 45°)
sin15° = sin(45° - 30°)
Using , sin(A + B) = sinAcosB + cosAsinB
sin(A - B) = sinAcosB - cosAsinB
♦ (sin30°cos45° + cos30°sin45°)² - (sin30°cos45° - cos30°sin45°)
♦ (1/2 × 1/√2 + √3/2 × 1/√2)² - (1/2 × 1/√2 - √3/2 × 1/√2)²
♦ [(1 + √3)/2√2]² - [(1 - √3)/2√2]²
♦ (1 + √3)²/(2√2)² - { (1 - √3)²/(2√2)² }
Using
(a + b)² = a² + b² + 2ab
(a - b)² = a² + b² - 2ab
♦ [1² + (√3)² + 2(√3)(1)]/4(2)] - {[1² + (√3)² - 2(√3)(1)]/4(2)}
♦ 4 + 2√3/8 - ( 4 - 2√3/8)
Taking common
♦ 2(2 + √3)/8 - [ 2(2 - √3)/8 ]
♦ 2 + √3/4 - (2 - √3)/4
♦ 2 + √3/4 - 2 + √3/4
♦ 2 + √3 - 2 + √3/4
♦ 2√3/4
♦ √3/2
Hence , sin²75° - sin²15° = √3/2
Similar questions
Social Sciences,
5 months ago
Social Sciences,
5 months ago
Math,
5 months ago
English,
1 year ago
Physics,
1 year ago