Math, asked by namyathomas, 1 year ago

The value of Sin (45+thetta) - cos(45-thetta) is equal to _______
A) 2 COS THETTA
B) 0
C) 2 SIN THETTA
D) 1

Answers

Answered by codiepienagoya
0

Option B i.e, 0 is the correct answer.

Step-by-step explanation:

Given that:  Sin(45+\theta)-Cos(45-\theta)

Formula:

Sin(A + B) = SinA.CosB + CosA.SinB \\ \\Cos(A-B)=CosACosB+SinASinB

Equation:

Sin(45+\theta)-Cos(45-\theta)\\\\

Solve equation by applying above formula:

(Sin45.Cos\theta+Cos45.Sin\theta)-(Cos45.Cos\theta+Sin45.Sin\theta)\\\\

Sin 45^{\circ}=\frac{1}{\sqrt{2}}\  \ and \  \  Cos 45^{\circ}= \frac{1}{\sqrt{2}}

(\frac{1}{\sqrt{2} }.Cos\theta+\frac{1}{\sqrt{2}}.Sin\theta) -(\frac{1}{\sqrt{2}}.Cos\theta+ \frac{1}{\sqrt{2}}.Sin\theta)

\frac{1}{\sqrt{2} }.Cos\theta+\frac{1}{\sqrt{2}}.Sin\theta-\frac{1}{\sqrt{2}}.Cos\theta-\frac{1}{\sqrt{2}}.Sin\theta

= 0.

That's why the  option B is correct.

Learn more:

  • Formula: https://brainly.in/question/5969501
Similar questions