Math, asked by febinjoel265, 8 months ago

The value of (sin 45° + cos 45°) is :

Answers

Answered by aaltra
2

Step-by-step explanation:

sin 45° + cos 45°

=(1/√2)+(1/√2)

=2/√2

=√2

Answered by ajay8949
2

 \huge \bold{ \pink{A} \green{N} \red{S} \blue{W} \purple{E} \orange{R}}

 \pink{we \: know}

 \sin45 =  \frac{ \:  \:  \: 1}{ \sqrt{2} }  \\

 \cos45 =  \frac{ \:  \:  \: 1}{ \sqrt{2} }  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sin45 +  \cos45

 =  >  \:  \:  \:  \:  \:  \:  \:  \frac{ \:  \:  \:  \: 1}{ \sqrt{2} }  +  \frac{ \:  \:  \:  \: 1}{ \sqrt{2} }  \\

  \:  \:  \:  \:  \:  \:  \: =  >  \:  \:  \:  \frac{ \:  \:  \: 1 + 1}{ \sqrt{2} }  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  >  \frac{ \:  \:  \: 2}{ \sqrt{2} }  \\

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  >  \sqrt{2}

Similar questions