Math, asked by jalaluvskhgds, 4 months ago

The value of sin(450 + α) – cos (450 – α) is




Select one:
a. 2sinα
b. 0
c. 1
d. 2cosα​

Answers

Answered by ratl9984
0

Answer:

correct answer is A

Step-by-step explanation:

i am not sure

Answered by MaheswariS
0

\textbf{To find:}

\textsf{The value of}\;\mathsf{sin(450^\circ+\alpha)-cos(450^\circ-\alpha)}

\textbf{Solution:}

\mathsf{Consider,}

\mathsf{sin(450^\circ+\alpha)-cos(450^\circ-\alpha)}

\mathsf{Using,}

\boxed{\mathsf{sin(A+B)=sinA\,cosB+cosA\,sinB}}

\boxed{\mathsf{cos(A-B)=cosA\,cosB+sinA\,sinB}}

\mathsf{=[sin450^\circ\,cos\alpha+cos450^\circ\,sin\alpha]-[cos450^\circ\,cos\alpha+sin450^\circ\,sin\alpha]}

\mathsf{=[sin(360^\circ+90^\circ)\,cos\alpha+cos(360^\circ+90^\circ)\,sin\alpha]-[cos(360^\circ+90^\circ)\,cos\alpha+sin(360^\circ+90^\circ)\,sin\alpha]}

\mathsf{=[sin90^\circ\,cos\alpha+cos90^\circ\,sin\alpha]-[cos90^\circ\,cos\alpha+sin90^\circ\,sin\alpha]}

\mathsf{=[(1)\,cos\alpha+(0)\,sin\alpha]-[(0)\,cos\alpha+(1)\,sin\alpha]}

\mathsf{=(cos\alpha+0)-(0+sin\alpha)}

\mathsf{=cos\alpha-sin\alpha}

\implies\boxed{\mathsf{sin(450^\circ+\alpha)-cos(450^\circ-\alpha)=cos\alpha-sin\alpha}}

Similar questions