the value of sin^4A+cos ^4A+2sin^2 A. cos^2 A is:
Answers
Answered by
1
Answer:
sin
4
A+cos
4
A
We have (a
2
+b
2
)
2
=a
4
+b
4
+2a
2
b
2
⇒a
4
+b
4
=(a
2
+b
2
)
2
−2a
2
b
2
Take a=sinA and b=cosA we get
sin
4
A+cos
4
A=(sin
2
A+cos
2
A)
2
−2sin
2
Acos
2
A
=1−2sin
2
Acos
2
A proved.
Answered by
1
Answer:
sin
4
A+cos
4
A
We have (a
2
+b
2
)
2
=a
4
+b
4
+2a
2
b
2
⇒a
4
+b
4
=(a
2
+b
2
)
2
−2a
2
b
2
Take a=sinA and b=cosA we get
sin
4
A+cos
4
A=(sin
2
A+cos
2
A)
2
−2sin
2
Acos
2
A
=1−2sin
2
Acos
2
A proved.
Similar questions
History,
3 months ago
Math,
3 months ago
Social Sciences,
3 months ago
Computer Science,
7 months ago
Hindi,
7 months ago
English,
1 year ago