The value of sin 60° x cos 30º is :
Answers
Answered by
5
Answer:
What is the value of sin (60+ theta)-cos (30-theta)?
How good is the camera of OPPO Reno5 Pro?
OPPO Reno5 Pro 5G is the latest addition to the popular and premium Reno series. Along with stunning features like Reno Glow Effe
Suparna Paul
Answered 2 years ago
Let theta be equal to x.
sin ( 60°+x)
= sin 60.cos x + cos 60.sinx
=[(√3 cos x) /2 + (1 sin x) /2]
cos (30 - x)
= cos 30.cos x + sin 30.sin x
=[ (√3 cos x) /2 + (1 sin x) /2]
Therefore, sin ( 60 + x) - cos ( 30 - x)
= [(√3 cos x) /2 + (1 sin x) /2] - [(√3 cos x) /2 + (1 sin x) /2]
= 0
The answer is 0
Answered by
1
Let theta be equal to x.
sin ( 60°+x)
= sin 60.cos x + cos 60.sinx
=[(√3 cos x) /2 + (1 sin x) /2]
cos (30 - x)
= cos 30.cos x + sin 30.sin x
=[ (√3 cos x) /2 + (1 sin x) /2]
Therefore, sin ( 60 + x) - cos ( 30 - x)
= [(√3 cos x) /2 + (1 sin x) /2] - [(√3 cos x) /2 + (1 sin x) /2]
= 0
Hope it helps!
sin ( 60°+x)
= sin 60.cos x + cos 60.sinx
=[(√3 cos x) /2 + (1 sin x) /2]
cos (30 - x)
= cos 30.cos x + sin 30.sin x
=[ (√3 cos x) /2 + (1 sin x) /2]
Therefore, sin ( 60 + x) - cos ( 30 - x)
= [(√3 cos x) /2 + (1 sin x) /2] - [(√3 cos x) /2 + (1 sin x) /2]
= 0
Hope it helps!
Similar questions