Math, asked by nikhilgolu231, 8 months ago

THE VALUE OF SIN 75 DEGREE

Answers

Answered by bhadanabhadana142
2

Answer:

Sin(A+B) = Sin A Cos B + Cos A Sin B. Sin 75 = Sin ( 45 + 30) = Sin 45 Cos 30 + Cos 45 Sin 30. Sin 75 = (1 / √2) ( √3 / 2) + (1 / √2) ( 1 / 2) = [ √3 + 1] / 2√2

Answered by bheemanianudeep
3

Answer:

6+√2/4 or -0.3877816354

Step-by-step explanation:

exactly?

Given Sin 75° = ?

Step 1: Here, we can write Sin 75° as Sin (45°+30°) or Sin (30°+45°)

Step 2: So I take Sin (45°+30°)

Step 3: It is in the form of Sin(A+B) formula,

: ) Sin (A+B)=SinA.CosB + CosA.SinB

here A = 45°, B = 30° then

Step 4: According to Sin (A+B) formula,

=> Sin45°.Cos30°+Cos45°.Sin30°

=> (1 / √2).(√3 / 2)+(1 / √2).(1 / 2)

=> (√3 / 2√2) + (1 / 2√2)

Rationalize the denominator,

=> (√3+1/ 2√2) . (2√2 / 2√2)

=> (2√2.√3 + 2√2) / 4x2

=> (2√6 + 2√2) / 8

Take 2 as common,

=> 2 (√6 + √2) / 8

Therefore the resultant answer is

=> √6 + √2 / 4

Similar questions