Math, asked by pritamponnada, 8 months ago

the value of [ sin π/9] [4+sec π/9]​

Answers

Answered by uniquesrivastava
4

Step-by-step explanation:

hopefully it would help you..

Jai Hind

Attachments:
Answered by bandameedipravalika0
0

Answer:

Concept:

Simplifying and finding the value of given statement.

Step-by-step explanation:

Given:

[ sin \frac{\pi}{9}] [4+sec \frac{\pi}{9}]

To find:

Value of  [ sin \frac{\pi}{9}] [4+sec \frac{\pi}{9}]

Solution:

  • Value of \pi=180^\circ
  • Given statement contains \frac{\pi}{9}

i.e. \frac{\pi}{9} = \frac{180^\circ}{9}

     \frac{\pi}{9} = 20^\circ

  • sin \frac{\pi}{9} = sin 20^\circ    and  sec\frac{\pi}{9} = sec20^\circ
  • Substituting these,

[ sin \frac{\pi}{9}] [4+sec \frac{\pi}{9}] =sin 20^\circ(4+ sec20^\circ)

        =sin 20^\circ(4+ \frac{1}{cos20^\circ} )

          =sin 20^\circ(\frac{4cos20^\circ+1}{cos20^\circ}  {} )

          =\frac{4sin 20^\circ\cos20^\circ+sin 20^\circ}{cos20^\circ}

            =\frac{2sin 40^\circ+sin 20^\circ}{cos20^\circ}        (since , 2sin\theta cos\theta=sin2\theta)

            =\frac{2sin (60-20)^\circ+sin 20^\circ}{cos20^\circ}

  • sing the formula,

sin(A-B)=sinAcosB-cosAsinB

 \frac{2sin (60-20)^\circ+sin 20^\circ}{cos20^\circ} =\frac{2(sin60^\circ cos20^\circ-cos60^\circ sin20)^\circ+sin 20^\circ}{cos20^\circ}

                              =\frac{2(sin60^\circ cos20^\circ)-2(cos60^\circ sin20)^\circ+sin 20^\circ}{cos20^\circ}

                               =\frac{2(sin(\frac{\sqrt{3} }{2})  cos20^\circ)-2(cos(\frac{1}{2} )sin20^\circ+sin 20^\circ}{cos20^\circ}

                               =\frac{2(\frac{\sqrt{3} }{2})  cos20^\circ}{cos20^\circ} -\frac{2(\frac{1}{2} )sin20^\circ}{cos20^\circ} +\frac{sin 20^\circ}{cos20^\circ}

                                =2(\frac{\sqrt{3} }{2})   -\frac{sin20^\circ}{cos20^\circ} +\frac{sin 20^\circ}{cos20^\circ}

                                  =\sqrt{3}

Hence, value is \sqrt{3}            

#SPJ3

Similar questions