The value of
sin(n+1) A – sin(n-1) A
cos(n+1) A + cos(n-1) A
is
Answers
Answered by
0
Answer:
As,
cos(A-B) = cosAcosB+sinAsinB....(1)
Now let,
A= (n+1)A
B=(n-1)A
then by eq (1) we can say that
cos[(n+1)A - (n-1)A]= sin(n+1)A.sin(n-1)A+cos(n+1)A.cos(n-1)A
in lhs,
=cos[An+A-(An-A)]
=cos 2A
hence proved
hope it helps uh...
Step-by-step explanation:
MissInvisible...✌️
Similar questions