Math, asked by abhipsaanandinee, 1 month ago

the value of sin theta tan theta/1-cos theta+tan^2 theta- sec^2theta is​

Answers

Answered by isha00333
35

Given:\[\frac{{\sin \theta \tan \theta }}{{1 - \cos \theta }} + {\tan ^2}\theta  - {\sec ^2}\theta \].

To find: the value of the given expression.

Solution:

Simplify the given expression.

\[\frac{{\sin \theta \tan \theta }}{{1 - \cos \theta }} + {\tan ^2}\theta  - {\sec ^2}\theta \]

\[\left[ {\tan \theta  = \frac{{\sin \theta }}{{\cos \theta }}} \right]\]

\[\frac{{\sin \theta \tan \theta }}{{1 - \cos \theta }} + {\tan ^2}\theta  - {\sec ^2}\theta  = \frac{{\sin \theta \frac{{\sin \theta }}{{\cos \theta }}}}{{1 - \cos \theta }} + \left( { - \left( {{{\sec }^2}\theta  - {{\tan }^2}\theta } \right)} \right)\]

Apply, \[\left[ {\left( {{{\sec }^2}\theta  - {{\tan }^2}\theta } \right) = 1} \right]\]

                                     \[ = \frac{{\sin \theta \frac{{\sin \theta }}{{\cos \theta }}}}{{1 - \cos \theta }} + \left( { - 1} \right)\]

                                     \[ = \frac{{{{\sin }^2}\theta }}{{\cos \theta \left( {1 - \cos \theta } \right)}} + \left( { - 1} \right)\]

                                    \[ = \frac{{{{\sin }^2}\theta }}{{\cos \theta  - {{\cos }^2}\theta }} + \left( { - 1} \right)\]

Take LCM of the above expression.

                                   \[ = \frac{{{{\sin }^2}\theta  - 1\left( {\cos \theta  - {{\cos }^2}\theta } \right)}}{{\cos \theta  - {{\cos }^2}\theta }}\]

                                   \[ = \frac{{{{\sin }^2}\theta  - \cos \theta  + {{\cos }^2}\theta }}{{\cos \theta  - {{\cos }^2}\theta }}\]

                                   \[ = \frac{{{{\sin }^2}\theta  + {{\cos }^2}\theta  - \cos \theta }}{{\cos \theta  - {{\cos }^2}\theta }}\]

Apply, \[\left[ {{{\sin }^2}\theta  + {{\cos }^2}\theta  = 1} \right]\]

                                   \[ = \frac{{1 - \cos \theta }}{{\cos \theta  - {{\cos }^2}\theta }}\]

                                   \[ = \frac{{1 - \cos \theta }}{{\cos \theta \left( {1 - \cos \theta } \right)}}\]

                                   \[ = \frac{1}{{\cos \theta }}\]

                                   \[ = \sec \theta \]

hence, the value of \[\frac{{\sin \theta \tan \theta }}{{1 - \cos \theta }} + {\tan ^2}\theta  - {\sec ^2}\theta \] is \[\sec \theta \].

Answered by anitabisht123
0

thanks

trigonometry chapter

Attachments:
Similar questions