Math, asked by sai6129student, 4 days ago

The value of
sin1 + sin3 + sin5+ ...+ sin89
a)1/sin1 b)2/sin 1 c)1/2sin1 d)1/cos1

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expression is

\rm \: sin1 + sin3 + sin5 +  -  -  -  + sin89 \\

[ Remark :- Here 1, 3, 5, _____, 89 are in degrees ]

Since, 1, 3, 5, ____, 89 forms an AP series with

First term, a = 1

Common difference, d = 2

nth term = 89

We know,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

So, on substituting the values, we get

\rm \: 89 = 1 + (n - 1)2 \\

\rm \: 88 = 2n - 2 \\

\rm \: 88 + 2 = 2n \\

\rm \: 90 = 2n \\

\rm\implies \:n = 45 \\

So,

\rm \:  =  \:  \underbrace{sin1 + sin3 + sin5 +  -  -  -  + sin89} \\  \:  \:  \:  \: 45 \: terms

We know,

\rm \: sina + sin(a + d) + sin(a + 2d) +  -  -  + sin(a + (n - 1)d) \\ \rm \:  =  \: \dfrac{sin\dfrac{nd}{2}sin\bigg( \dfrac{2a + (n - 1)d}{2} \bigg)  }{sin\dfrac{d}{2} }  \\

So, on substituting the values, we get

\rm \: sin1 + sin3 + sin5 +  -  -  + sin89 \\  \\ \rm \:  =  \: \dfrac{sin\dfrac{45 \times 2}{2}sin\bigg( \dfrac{2 \times 1 + (45 - 1)\times 2}{2} \bigg)  }{sin\dfrac{2}{2} }  \\

\rm \: sin1 + sin3 + sin5 +  -  -  + sin89 \\  \\ \rm \:  =  \: \dfrac{sin45 \times sin45}{sin1}   \\

\rm \: sin1 + sin3 + sin5 +  -  -  + sin89 = \dfrac{1}{ \sqrt{2} } \times \dfrac{1}{ \sqrt{2} }  \times \dfrac{1}{sin1}   \\\

\rm \: sin1 + sin3 + sin5 +  -  -  + sin89 =  \dfrac{1}{2 \: sin1}   \\\

So, option (c) is correct.

\rule{190pt}{2pt}

Additional Information :-

\rm \: cosa + cos(a + d) + cos(a + 2d) +  -  -  + cos(a + (n - 1)d) \\ \rm \:  =  \: \dfrac{sin\dfrac{nd}{2} \:  \: cos\bigg( \dfrac{2a + (n - 1)d}{2} \bigg)  }{sin\dfrac{d}{2} }  \\

Similar questions