Math, asked by harish860752, 6 months ago

The value of sin² 30° – cos² 30° is
2 points
(a) –1/2
(b) √3/2
(c) 3/2
(d) –2/3​

Answers

Answered by Asterinn
10

 \implies  \sf  {sin}^{2} 30 \degree -  {cos}^{2} 30 \degree

We know that :-

  • sin 30° = 1/2
  • cos 30° = √3/2

 \implies  \sf  { \bigg( \dfrac{1}{2}\bigg) }^{2} -  { \bigg(\dfrac{ \sqrt{3} }{2} \bigg)}^{2}

\implies  \sf  {\dfrac{1}{4} }-  {\dfrac{ {3} }{4} }

LCM = 4

\implies  \sf  {\dfrac{1 - 3}{4} }

\implies  \sf  {\dfrac{ - 2}{4} }

\implies  \sf  {\dfrac{ - 1}{2} }

\implies  \sf  {sin}^{2} 30 \degree -  {cos}^{2} 30 \degree =  \dfrac{ - 1}{2}

Answer :

  • option (a) -1/2 is correct

____________________

Trigonometric table :-

\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &   \bf{0}^{ \circ} &  \bf{30}^{ \circ} &   \bf{45}^{ \circ}  &  \bf{60}^{ \circ} &   \bf{90}^{ \circ}  \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\  \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\  \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 &  \sqrt{3}  & \rm Not \: De fined \\  \\ \rm cosec A &  \rm Not \: De fined & 2&  \sqrt{2}  & \dfrac{2}{ \sqrt{3} } &1 \\  \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }&  \sqrt{2}  & 2 & \rm Not \: De fined \\  \\ \rm cot A & \rm Not \: De fined &  \sqrt{3} & 1  &  \dfrac{1}{ \sqrt{3} } & 0 \end{array}

Similar questions