Math, asked by 1247gagan, 1 month ago

The value of sin75° is​

Answers

Answered by amansharma264
5

EXPLANATION.

Value of sin75°.

As we know that,

We can write equation as,

⇒ sin(75°) = sin(45° + 30°).

As we know that,

Formula of :

⇒ sin(A + B) = sin(A).cos(B) + cos(A).sin(B).

Put the values in the equation, we get.

⇒ sin(45° + 30°) = sin(45°).cos(30°) + cos(45°).sin(30°).

⇒ sin(45° + 30°) = 1/√2 x √3/2 + 1/√2 x 1/2.

⇒ sin(45° + 30°) = √3/2√2 + 1/2√2.

⇒ sin(45° + 30°) = (√3 + 1)/2√2.

sin(75°) = (√3 + 1)/2√2.

                                                                                                                       

MORE INFORMATION.

(1) = sin(A ± B) = sin(A).cos(B) ± cos(A).sin(B).

(2) = cos(A + B) = cos(A).cos(B) - sin(A).sin(B).

(3) = cos(A - B) = cos(A).cos(B) + sin(A).sin(B).

(4) = tan(A + B) = tan(A) + tan(B)/1 - tan(A).tan(B).

(5) = tan(A - B) = tan(A) - tan(B)/1 + tan(A).tan(B).

Answered by Atlas99
16

Answer: (√3 + 1)/ 2√2

EXPLANATION

Sin 75 we can write it as

Sin 75 = Sin(45+30)…………………..(1)

By applying the formula

Sin (A + B) = Sin A. Cos B + Cos A. Sin B

Sin (45 + 30) = Sin 45. Cos 30 + Cos 45. Sin 30…………………..(2)

Sin Values

sin 0° = √(0/4) = 0

sin 30° = √(1/4) = ½

sin 45° = √(2/4) = 1/√2

sin 60° = √3/4 = √3/2

cos 90° = √(4/4) = 1

Cos Values

cos 0° = √(4/4) = 1

cos 30° = √(3/4) = √3/2

cos 45° = √(2/4) = 1/√2

cos 60° = √(1/4) = 1/2

cos 90° = √(0/4) = 0

Substitute the value of sin 30, sin 45, cos 30 and cos 45 degrees, then equation (2) will becomes

Sin (45 + 30) = Sin 45. Cos 30 + Cos 45. Sin 30

Sin (45 + 30) = 1/√2 . √3/2 + 1/√2 . 1/2

Sin (45 + 30) = (√3 + 1) / 2√2

Hence the value of Sin 75 degree is equal to (√3 + 1) / 2√2.

THANKS!!

Similar questions