Math, asked by smithashetty, 10 months ago

the value of Sn+1-Sn=​

Answers

Answered by MaheswariS
8

\textsf{The sum of n terms of an A.P}

\mathsf{S_n=\frac{n}{2}[2a+(n-1)d]}

\implies\mathsf{S_{n+1}=\frac{n+1}{2}[2a+((n+1)-1)d]}

\implies\mathsf{S_{n+1}=\frac{n+1}{2}[2a+nd]}

\textsf{Now,}

\mathsf{S_{n+1}-S_n}

\mathsf{=\displaystyle\frac{n+1}{2}[2a+nd]-\frac{n}{2}[2a+(n-1)d]}

\mathsf{=\displaystyle\frac{(n+1)(2a+nd)-n(2a+(n-1)d)}{2}}

\mathsf{=\displaystyle\frac{2a\,n+n^2d+2a+nd-2a\,n+n^2d-nd}{2}}

\mathsf{=\displaystyle\frac{2a+2nd}{2}}

\mathsf{=\displaystyle\frac{2(a+nd)}{2}}

\mathsf{=a+nd}

\mathsf{=a+((n+1)-1)d}

\mathsf{=t_{n+1}}

\therefore\mathsf{S_{n+1}-S_n=t_{n+1}}

Answered by tshantha86
2

Step-by-step explanation:

this is the answer

Attachments:
Similar questions