Math, asked by vermanushka7487, 1 month ago

The Value of tan -1. 1/5 + tan -1. 1/3 + tan -1 1/3​

Answers

Answered by SADESS
3

Answer:

sis i don't rber you?

Kim Seok-jin, also known by his stage name Jin, is a South Korean singer, songwriter, and member of the South Korean boy band B.T.S since June 2013. Kim has co-written and released three solo tracks with B.T.S: "Awake", "Epiphany", and "Moon", all of which have charted on South Korea's Gaon Digital Chart.

Answered by ExElegant
3

Solution -

\: \: \: \sf{tan^{-1} \bigg(\dfrac{1}{5}\bigg) \: + \: tan^{-1} \bigg(\dfrac{1}{3}\bigg) \: + \: tan^{-1} \bigg(\dfrac{1}{3}\bigg)}

\: \: \: \sf{tan^{-1} \bigg(\dfrac{1}{5}\bigg) \: + \: 2 tan^{-1} \bigg(\dfrac{1}{3}\bigg)}

as we know that -

\: \: \: \: \: \: \sf{\boxed{\bold{\blue{2tan^{-1} x \: \: = \: \: tan^{-1} \dfrac{2x}{1 - x^{2}}}}}}

On applying this property

\: \: \sf{tan^{-1} \bigg(\dfrac{1}{5}\bigg) \: + \: tan^{-1} \bigg[\dfrac{2(\dfrac{1}{3})}{1 - (\dfrac{1}{3})^{2}}\bigg]}

\: \: \sf{tan^{-1} \bigg(\dfrac{1}{5}\bigg) \: + \: tan^{-1} \bigg[\dfrac{(\dfrac{2}{3})}{(1 - \dfrac{1}{9})}\bigg]}

\: \: \sf{tan^{-1} \bigg(\dfrac{1}{5}\bigg) \: + \: tan^{-1} \bigg[\dfrac{(\dfrac{\cancel{2}}{\cancel{3}})}{(\dfrac{4 \: \: \cancel{8}}{3 \: \: \cancel{9}})}\bigg]}

\: \: \sf{tan^{-1} \bigg(\dfrac{1}{5}\bigg) \: + \: tan^{-1} \bigg(\dfrac{3}{4}\bigg)}

we also know that -

\: \: \: \: \: \: \sf{\boxed{\bold{\blue{tan^{-1} x \: + \:  tan^{-1} y \: \: = \: \: tan^{-1} \bigg(\dfrac{x + y}{1 - xy}\bigg)}}}}

on applying this property

\: \: \: \: \: \sf{tan^{-1} \bigg[\dfrac{(\dfrac{1}{5} \: + \: \dfrac{3}{4})}{1 \: - \: (\dfrac{1}{5})(\dfrac{3}{4})}\bigg]}

\: \: \: \: \: \: \sf{tan^{-1} \bigg[\dfrac{\dfrac{(4 + 15)}{20}}{(1 - \dfrac{3}{20})}\bigg]}

\: \: \: \: \: \: \: \: \: \sf{tan^{-1} \bigg[\dfrac{(\dfrac{19}{\cancel{20}})}{(\dfrac{17}{\cancel{20}})}\bigg]}

\: \: \: \: \: \: \: \: \:  \sf{\boxed{\pink{tan^{-1} \bigg(\dfrac{19}{17}\bigg)}}}

Similar questions