Math, asked by sanoriaritu351, 9 months ago

The value of tan^2 30 degree + 4sin^2 45 degree + cos^2 30 degree is

Answers

Answered by mysticd
0

 The \: value \:of \: tan^{2} 30\degree + 4 sin^{2} 45\degree + cos^{2} 30\degree

 = \Big( \frac{1}{\sqrt{3}}\Big)^{2} + 4 \Big(\frac{1}{\sqrt{2}}\Big)^{2} + \Big( \frac{\sqrt{3}}{2}\Big)^{2}

 = \frac{1}{3} + 4 \times \frac{1}{2} + \frac{3}{4}

 = \frac{1}{3} + 2 + \frac{3}{4}

 = \frac{4+8+9}{12}

 = \frac{21}{12}

 = \frac{7}{4}

Therefore.,

 \red{The \: value \:of \: tan^{2} 30\degree + 4 sin^{2} 45\degree + cos^{2} 30\degree}

 \green { = \frac{7}{4}}

•••♪

Answered by Anonymous
211

\huge\bf\red{Question}

The value of tan^2 30 degree + 4sin^2 45 degree + cos^2 30 degree is

\huge \bf\orange{Solution}

 \sf\mapsto\:\:\:\purple{\Big( \dfrac{1}{\sqrt{3}}\Big)^{2} + 4 \Big(\dfrac{1}{\sqrt{2}}\Big)^{2} + \Big( \dfrac{\sqrt{3}}{2}\Big)^{2} }

 \sf\mapsto\:\:\:\green{ \dfrac{1}{3} + 4 \times \dfrac{1}{2} + \dfrac{3}{4}}

\sf\mapsto\:\:\:\purple{ \dfrac{1}{3} + 2 + \dfrac{3}{4}}

 \sf\mapsto\:\:\:\green{\dfrac{4+8+9}{12}}

 \sf\mapsto\:\:\:\purple{ \dfrac{\cancel{21}}{\cancel{12}} }

 \sf\mapsto\:\:\:\green{ \dfrac{7}{4}}

 \tt\red{\therefore\:\:The \: value \:of \: tan^{2} 30\degree + 4 sin^{2} 45\degree + cos^{2} 30\degree \ = \ \dfrac{7}{4}}

Similar questions