Math, asked by kundancool24, 9 months ago

The value of
tan 57° - tan 12º – tan 57° tan 12° is
76)(A) tan 69° (B) tan 45º
(C) 0
(D) tan 57°​

Answers

Answered by pulakmath007
3

SOLUTION

TO CHOOSE THE CORRECT OPTION

The value of tan 57° - tan 12º – tan 57° tan 12° is

(A) tan 69°

(B) tan 45º

(C) 0

(D) tan 57°

EVALUATION

 \displaystyle \sf{ \tan  {45}^{ \circ}  = 1}

 \displaystyle \sf{ \implies \:  \tan  ({57}^{ \circ} - {12}^{ \circ} )  = 1}

 \displaystyle \sf{ \implies \:   \frac{\tan  {57}^{ \circ}  -\tan  {12}^{ \circ} }{1 + \tan  {57}^{ \circ}  \tan  {12}^{ \circ} }   = 1}

 \displaystyle \sf{ \implies \:   \tan  {57}^{ \circ}  -\tan  {12}^{ \circ}  = 1 + \tan  {57}^{ \circ}  \tan  {12}^{ \circ}    }

 \displaystyle \sf{ \implies \:   \tan  {57}^{ \circ}  -\tan  {12}^{ \circ}  -  \tan  {57}^{ \circ}  \tan  {12}^{ \circ}  = 1 }

 \displaystyle \sf{ \implies \:   \tan  {57}^{ \circ}  -\tan  {12}^{ \circ}  -  \tan  {57}^{ \circ}  \tan  {12}^{ \circ}  = \tan  {45}^{ \circ} }

FINAL ANSWER

Hence the correct option is (B) tan 45º

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. prove that (1+cos18)(1+cos54)(1+cos126)(1+cos162)=1÷16

https://brainly.in/question/29235086

2. Find the value of cot (-3155°)

https://brainly.in/question/6963315

Answered by vaibhavsakharkar122
0

Answer:

Step-by-step explanation:

B) tan 45

Similar questions