Math, asked by l6cifer6665, 7 months ago

The value of tan
7.1/2 is equal to​

Answers

Answered by priyanka0506
0

 \tan(7.1/2)

7½° lies in the first quadrant.

Therefore, both sin 7½° and cos 7½° is positive.

For all values of the angle A we know that, sin (α - β) = sin α cos β - cos α sin β.

Therefore, sin 15° = sin (45° - 30°)

  \frac{7}{root2}. \frac{root3}{2} +  \frac{1}{root2}  . \frac{1}{2}

 \frac{root3}{2root2}. \frac{1}{2root2}

 \frac{root3 - 1}{2root2}

Again, for all values of the angle A we know that, cos (α - β) = cos α cos β + sin α sin β.

Therefore, cos 15° = cos (45° - 30°)

cos 15° = cos 45° cos 30° + sin 45° sin 30°

 \frac{1}{root2} . \frac{root3}{2}  +  \frac{1}{root2} . \frac{1}{2}

 \frac{root3}{2root2}   +  \frac{1}{2root2}

 \frac{root3 + 1}{2root2}

now tan √2 =

 \frac{ \sin(7 \times \frac{1}{2} ) }{ \cos(7 \times \frac{1}{2} ) }

 \frac{2 ( {sin}^{2}7 \times \frac{1}{2}  ) }{2 \cos(7 \times \frac{1}{2} ) \sin(7 \times \frac{1}{2} )  }

 \frac{1 -  \cos(15) }{ \sin(15) }

 \frac{1 -  \binom{root3 + 1 }{2root2} }{ \binom{root3 - 1}{2root2} }

 \frac{(2root2 - root3 - 1)( - root3 + 1)}{root3 - 1}

 \frac{2root6 - 3 - root3 \ + 2root2 - root3 - 11}{2}

= √6 - √3 + √2 - 2

Therefore, tan 7½° = √6 - √3 + √2 - 2

plz mark it as brainliest

it took so much time to me to complete it plzzzzzzzzz

like seriously u didn't even thanked me

never gonna help u agian

never!!!!!

Similar questions