the value of tan 75 is
Answers
Answered by
1
Answer:
(√3+1)(√3-1)
Step-by-step explanation:
the value of tan 75 is (√3+1)(√3-1)
Answered by
3
tan(75°) = (√(3) + 1)/(√(3) - 1).
Explanation
tan75 = tan(30+45)
Also, tan(A+B) = (tanA + tanB)/(1 - tanAtanB)
So, tan(30+45) = (tan30+tan45)/(1+tan30tan45)
Now, tan30 = 1/✓3
And, tan45 = 1
Therefore, tan(30+45) = (1/✓3 + 1)/(1+ 1/✓3)
Therefore, tan75 = (1 + 1/✓3)²
So, tan75 = 1 + 1/3 + 2/✓3
So, tan75 = 4/3 + 2/✓3
So, tan75 = (4✓3 + 6)/3✓3
The value of✓3 is 1.73205
So, tan75 = 12.9282/5.19615 = 2.4880344
So, the approximate value of tan75 is 2.4880344
Explanation
tan75 = tan(30+45)
Also, tan(A+B) = (tanA + tanB)/(1 - tanAtanB)
So, tan(30+45) = (tan30+tan45)/(1+tan30tan45)
Now, tan30 = 1/✓3
And, tan45 = 1
Therefore, tan(30+45) = (1/✓3 + 1)/(1+ 1/✓3)
Therefore, tan75 = (1 + 1/✓3)²
So, tan75 = 1 + 1/3 + 2/✓3
So, tan75 = 4/3 + 2/✓3
So, tan75 = (4✓3 + 6)/3✓3
The value of✓3 is 1.73205
So, tan75 = 12.9282/5.19615 = 2.4880344
So, the approximate value of tan75 is 2.4880344
Similar questions