Math, asked by VishnuSnow, 7 months ago

The value of tan 81° – tan63 tan27° + tan9° is
(a) 1 (b) 2 (c) 3 (d) 4 (e) 6​

Answers

Answered by Purpleubts
0

the ans is E which most aprox to 5.64

Answered by aryan073
2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ ■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□

\mathtt{\huge{\underline{\red{Answer\: :}}}}

 \:  \large \red{ \bold{ \underline{step \: by \: step \: explaination }}}

  \bf \: tan81 \degree - tan63 \degree - tan27 \degree + tan9 \degree

 \:  \\  \implies \sf \: tan 81 \degree - tan63 \degree - tan27 \degree + tan9 \degree

 \: \\   \implies \sf \: tan81 \degree \:  + tan9 \degree - (tan63 \degree + tan27 \degree

 \\  \implies \sf \: cot \: 9 \degree + tan9 \degree - (cot27 \degree + tan27 \degree)

 \:  \\  \implies \displaystyle \sf \:  \frac{ {(cos9 \degree})^{2} + ( {sin9 \degree)}^{2}  }{sin9.cos9} -  \frac{( {cos27 \degree)^2 + (sin27 \degree)}^{2} }{sin27 \degree.cos27 \degree}

 \:  \\  \implies \displaystyle \sf \:  \frac{1}{sin9 \degree.cos9 \degree}  -  \frac{1}{sin27 \degree .cos27 \degree}

 \:  \implies \displaystyle \sf \:  \frac{2}{sin18 \degree}  -  \frac{2}{sin54 \degree}

 \:  \implies \displaystyle \sf \: 2 \times  \frac{sin54 \degree - sin18 \degree}{sin54 \degree.sin18 \degree}

 \:  \implies \displaystyle \sf \:  \frac{4cos36 \degree  \: sin18 \degree}{cos36 \degree \: sin18 \degree}

 \:  \implies \displaystyle \sf \:  \frac{4 \cancel{cos36 \degree \: sin18 \degree}}{ \cancel{cos36 \degree \: sin18 \degree}}

 \:  \implies \bf{ \underline{the \: answer \: will \: be \: 4}}

\pink{■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□}

❄ Hope this answer helps u ⛄ ⛄

Similar questions