Math, asked by Asmit2514, 1 year ago

The value of tan{sin⁻¹(3/5)+cos⁻¹(5/13)} is.......,Select Proper option from the given options.
(a) - 24/5
(b) - 22/15
(c) - 63/16
(d) - 47/12

Answers

Answered by sprao534
0

please see the attachment

Attachments:
Answered by sushiladevi4418
0

Answer:

(c) -\frac{63}{16}

Step-by-step explanation:

As we that that tan\left ( A+B \right )=\frac{tanA+tanB}{1-tanA\times tanB}

Now from the given question  tan\left ( sin^{-1}\left ( \frac{3}{5} \right )+ cos^{-1}\left ( \frac{5}{13} \right )\right )

we have  A= sin^{-1}\left ( \frac{3}{5} \right )

              \Rightarrow sinA= \left ( \frac{3}{5} \right )

         ∴\Rightarrow tanA= \left ( \frac{3}{4} \right )

  and       B= cos^{-1}\left ( \frac{5}{13} \right )

             \Rightarrow cosB= \left ( \frac{5}{13} \right )

        ∴\Rightarrow tanB= \left ( \frac{12}{5} \right )

Firstly substitute the value of A and B in tan\left ( A+B \right )=\frac{tanA+tanB}{1-tanA\times tanB}

\Rightarrow tan\left ( sin^{-1}\left ( \frac{3}{5} \right )+cos^{-1}\left ( \frac{5}{13} \right ) \right )=\frac{tanA+tanB}{1-tanA\times tanB}

Now,

Substitute the value of tanA and tanB in

\Rightarrow tan\left ( sin^{-1}\left ( \frac{3}{5} \right )+cos^{-1}\left ( \frac{5}{13} \right ) \right )=\frac{tanA+tanB}{1-tanA\times tanB}

\Rightarrow tan\left ( sin^{-1}\left ( \frac{3}{5} \right )+cos^{-1}\left ( \frac{5}{13} \right ) \right )=\frac{\frac{3}{4}+\frac{12}{5}}{1-\frac{3}{4}\times \frac{12}{5}}

\Rightarrow tan\left ( sin^{-1}\left ( \frac{3}{5} \right )+cos^{-1}\left ( \frac{5}{13} \right ) \right )=-\frac{63}{16}

Hence ,the value of  tan\left ( sin^{-1}\left ( \frac{3}{5} \right )+ cos^{-1}\left ( \frac{5}{13} \right )\right )=-\frac{63}{16}

Similar questions