Math, asked by upasana202021, 3 days ago

The value of (tan square 45 degree - cos square 60 degree) is: options are - A) 1/2 B) 1/4 C) 3/2 D) 3/4​

Answers

Answered by MystícPhoeníx
35

Answer:

(D) 3/4 is the required answer .

Step-by-step explanation:

\bf\;tan^{2}45^{\circ}- cos^{2} 60^{\circ}

\sf\dashrightarrow\; tan^{2}45^{\circ}- cos^{2} 60^{\circ} \\\\\\\sf\dashrightarrow\;  (1)^{2} - (\frac{1}{2})^{2}\\\\\sf\dashrightarrow\;  1 - (\frac{1}{4})\\\\\\\sf\dashrightarrow\; 1 - \frac{1}{4}\\\\\\\sf\dashrightarrow\;  \frac{4-1}{4} \\\\\\\sf\dashrightarrow\;  \frac{3}{4} \\\\\\\boxed{\bf{Hence, the \; required \; option \; is \; D) \frac{3}{4}}}

Additional Information !!

\boxed{\begin{array}{c |c|c|c|c|c} \bf\angle\theta & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin \theta & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: theta & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan\theta & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec\theta & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec\theta & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot \theta & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}

Answered by kvalli8519
7

tan²45° - cos²60° = ¾

Step-by-step explanation:

\rm➠\: \:  { \tan}^{2} 45 \degree -  { \cos}^{2} 60 \degree

\rm➠\: \: (1) ^{2}  -  {( \frac{1}{2})}^{2}

\rm➠\: \: 1 -  \frac{1}{4}

\rm➠\: \:  \frac{3}{4}

Similar questions