Math, asked by ayush0084, 1 year ago

the value of tan100°+4sin100° is equal to​

Answers

Answered by meowwww75
10

Hola!!

A long way to go !!!! Will drive in simple way xD

First things first

>>>>>>>>>>>>>>>>>>>>>>

To find : tan 100 + 4 sin 100 (Formalities :p [Just Note start point])

>>>>>>>>>>>>>>>>>>>>>>

✓✓✓We know, tan\, x = \frac{Sin\, x}{cos\, x}

= \frac{sin\, 100}{cos\, 100}+4 sin\, 100

= \frac{sin\, 100+4sin\, 100\: cos\, 100}{cos\, 100}

✓✓✓ Use Sin\: 2A = 2\: sin\, A\: cos\, A

= \frac{sin\, 100+2(2\: sin\, 100\: cos\, 100)}{cos\, 100}

= \frac{sin\, 100+2sin\, 2(100)}{cos\, 100}

= \frac{sin\, 100+2sin\, 2(100)}{cos\, 100}

= \frac{sin\, 100+2sin\, 200}{cos\, 100}

✓✓✓ Write 2 sin 200 as sin200+ sin 200

= \frac{(sin\, 100+sin\, 200)+ sin\, 200}{cos\, 100}

✓✓✓ Use Sin\, A+ Sin\, B= 2 sin\, (\frac{A+B}{2})\: cos\, (\frac{A-B}{2})

Replace A= 200, B = 100;

\frac{A+B}{2} =150\:  \frac{A-B}{2}=50

= \frac{2sin\, (150)\: cos\, (50)+ sin\, 200}{cos\, 100} ............@Eq. 1

✓✓✓ Find Value of Sin 150, Sin 200 and Cos 100

Sin 150 = Sin (180-30) = Sin 30 = 1/2 (II Quad. sin is +Ve)

Sin 200 = Sin (270-70) = - Cos 70

cos 100 = cos (90+10) = Sin 10

Replace in @Eq. 1

= \frac{2\, (\frac{1}{2})\: cos\, (50)+ (-cos\, 70}{-sin\, 10}

= \frac{cos\, 50-cos\ 70}{-sin\, 10}

#### Ufff! looks familiar. It's cos A - Cos B.

Wait ! wait !

A should have a high value. so it is cos 70 - cos 50.

Use the (-1) from (-sin10) in the denominator for Change\, of\, signs

= \frac{cos\, 70-cos\ 50}{sin\, 10}

✓✓✓ Use cos\, A- cos\, B= 2 sin\, (\frac{A+B}{2})\: sin\, (\frac{B-A}{2})

Replace A = 70 , B = 50

= \frac{A+B}{2}= 60; \frac{B-A}{2}= -10

= \frac{2\: sin\, 60(-sin\, 10)}{sin\, 10}

= -2sin\, 60

✓✓✓ We know Sin60 = √3/2

-2\times\frac{\sqrt{3}}{2}= -\sqrt{3}

Look ! what we got !!! Yeah !! Your Answer

Meowwww xD

# Together we go Far. Be brainly

Similar questions