Math, asked by abhiabhi7, 6 months ago

the value of Tan² alpha-1/cos²alpha​

Answers

Answered by Anonymous
11

 \bf \LARGE\color{pink}Hola!

To FinD :

 \sf \rightsquigarrow  { \tan}^{2}  \alpha  -  \frac{1}{ { \cos}^{2} \alpha }  =  {?}  \\

SolutioN :

 \circ  \:  \:  \: \sf \: we  \:  \: know \:  \:  the  \:  \: formula,

 \hookrightarrow \sf \:  { \sec}^{2}  \theta -  { \tan}^{2}  \theta = 1

Now,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  { \tan}^{2}  \alpha   -   \frac{1}{ { \cos}^{2}  \alpha }  \\

 \sf \implies- (  - { \tan}^{2}  \alpha     + { \sec}^{2}  \alpha )

 \implies{ \underline {\boxed{  \: -  \sf1 \: }}}

ConcepT BoosteR :

 \circ \:  \:   { \sin}^{2}  \theta +  { \cos}^{2}  \theta = 1

 \circ \:  \:   { \cosec}^{2}  \theta +  { \cot}^{2}  \theta = 1

 \circ \sf  \:  \: \sin( \theta +  \phi) =  \sin \theta \cos \phi +  \cos \theta \sin \phi

 \circ \sf  \:  \: \sin( \theta  -   \phi) =  \sin \theta \cos \phi  -   \cos \theta \sin \phi

 \circ \sf  \:  \: \cos( \theta   +   \phi) =  \cos \theta \cos \phi  -   \sin \theta \sin \phi

 \circ \sf  \:  \: \cos( \theta    -    \phi) =  \cos \theta \cos \phi   +    \sin \theta \sin \phi

________________________

HOPE THIS IS HELPFUL...

 \tt \fcolorbox{skyblue}{skyblue}{@StayHigh}

Similar questions