The value of such that :
1. 1/2
2. 2
3. -1/2
4. -2
Answers
Answer:-
On solving the equation, we get,
So, Option 4 is the answer for the problem.
Answer:
Answer:-
\displaystyle \small\int \limits^{ \alpha + 1}_{ \alpha } \sf\frac{dx}{(x + \alpha )(x + \alpha + 1)}
α
∫
α+1
(x+α)(x+α+1)
dx
\displaystyle = \int \limits^{ \alpha + 1}_{ \alpha } \bigg[ \sf \frac{1}{x + \alpha } - \frac{1}{x + \alpha + 1} \bigg] \sf dx=
α
∫
α+1
[
x+α
1
−
x+α+1
1
]dx
\displaystyle = \ln \bigg( \sf\frac{x + \alpha }{x + \alpha + 1} \bigg) \bigg|^{ \small\alpha + 1}_{ \small \alpha }=ln(
x+α+1
x+α
)
∣
∣
∣
∣
∣
α
α+1
\displaystyle = \ln \bigg ( \sf \frac{2 \alpha + 1}{2 \alpha + 2} \times \frac{2 \alpha + 1}{2 \alpha } \bigg)=ln(
2α+2
2α+1
×
2α
2α+1
)
\displaystyle = \ln \bigg( \sf\frac{9}{8} \bigg)=ln(
8
9
)
\implies \displaystyle \frac{ \sf{(2 \alpha + 1)}^{2} }{4 \alpha ( \alpha + 1)} = \frac{9}{8}⟹
4α(α+1)
(2α+1)
2
=
8
9
\implies \displaystyle \frac{ {(2 \alpha + 1)}^{2} }{ \alpha ( \alpha + 1)} = \frac{9}{2}⟹
α(α+1)
(2α+1)
2
=
2
9
\implies \displaystyle \sf\frac{4 { \alpha }^{2} + 4\alpha + 1 }{ \alpha^{2} + \alpha } = \frac{9}{2}⟹
α
2
+α
4α
2
+4α+1
=
2
9
\implies \displaystyle ( \sf8 { \alpha }^{2} + 8\alpha + 2 ) = 9 { \alpha }^{2} + 9 \alpha⟹(8α
2
+8α+2)=9α
2
+9α
\implies \displaystyle { \sf \alpha }^{2} + \alpha - 2 = 0⟹α
2
+α−2=0
On solving the equation, we get,
\sf \alpha = 1 \: or - 2α=1or−2
So, Option 4 is the answer for the problem.