Math, asked by vanshanand7818, 1 year ago

The value of  \frac{2sec 52\textdegree}{3 cosec 38\textdegree} -\frac{sin37\textdegree}{2 cos53\textdegree} is:
(A) 1
(B) \frac{1}{6}
(C) -\frac{1}{6}
(D) 1

Answers

Answered by hukam0685
1
Answer: option B
 \frac{1}{6} \\

Solution:

 \frac{2 \: sec \: 52°}{3 \: cosec \: 38° } - \frac{sin \: 37°}{2 \: cos \: 53°} \\ \\
we know that complementary angle formula

sin \: (90° - \theta) = cos \: \theta \\ sec(90° - \theta) = cosec \: \theta \\
So,apply these formulas

= \frac{2 \: sec \: 52°}{3 \: cosec \: 38° } - \frac{sin(90° - 53°)}{2 \: cos \: 53°}\\ \\ =\frac{2 \: sec \: (90° - 38°)}{3 \: cosec \: 38°} - \frac{cos \: 53°}{2 \: cos \: 53°} \\ \\ =\frac{2 \: cosec \: 38°}{3 \: cosec \: 38° } - \frac{1}{2} \\ \\ =\frac{2}{3} - \frac{1}{2} \\ \\ = \frac{4 - 3}{6} \\ \\ = \frac{1}{6} \\
Hope it helps you.
Similar questions