The value of is
(a)
(b)
(c)1
(d)2
Answers
SOLUTION :
The correct option is (c) = 1
Given : cos³ 20° - cos³ 70°/ sin³ 70° - sin³ 20°
cos³ 20° - cos³ 70°/ sin³ 70° - sin³ 20°
= [(cos 20° - cos 70°) (cos² 20° + cos² 70° + cos 20° cos 70°)] / [(sin 70° - sin 20°)(sin² 70° + sin² 20°+ sin 70° sin 20°
[(a³ - b³) = (a - b) (a² + b² + ab]
= [(cos (90° - 70°) - cos (90° - 20°)) (cos² (90° - 70°)+ cos² 70° + cos 20° cos 70°] / [(sin 70° - sin 20°)(sin² 70° + sin²(90° - 70°)) + sin (90° - 20° ) sin (90° - 70°)]
= (sin 70° - sin 20°)(sin² 70° + cos² 70° + cos 20° cos 70°] / [(sin 70° - sin 20°)(sin² 70° + cos ² 70°)) + cos 20° cos 70°)]
[cos (90 - θ) = sin θ , sin (90° -θ ) = cos θ]
= (1 + cos 20° cos 70°) / (1 + cos 20° cos 70°)
[sin² θ + cos² θ = 1]
= 1
cos³ 20° - cos³ 70°/ sin³ 70° - sin³ 20° = 1
Hence, the value of cos³ 20° - cos³ 70°/ sin³ 70° - sin³ 20° is 1 .
HOPE THIS ANSWER WILL HELP YOU…
Answer:
Option(C)
Step-by-step explanation:
Given Equation is : [cos³20 - cos³70]/[sin³70 - sin³20]
= [cos³(90 - 70) - cos³70] / [sin³ 70 - sin³(90 - 70)]
∴ cos(90 - θ) = sin θ and sin(90 - θ) = cos θ.
= [sin³ 70 - cos³ 70] / [sin³ 70 - cos³ 70]
= 1.
Hope it helps!