Math, asked by madhav5245, 5 hours ago

The value of
 \lim \: n \: to \:  \infty  \:  { (\frac{n!}{ {n}^{n} } )}^{ \frac{1}{n} }  \: is \:
Please provide the detailed solution.

Urgently required

Moderators, math genius, Brainly Stars ​

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty } \:  {\bigg[\dfrac{n!}{ {n}^{n} } \bigg]}^{ \dfrac{1}{n} }

Let assume that,

\rm :\longmapsto\:y = \displaystyle\lim_{n \to  \infty } \:  {\bigg[\dfrac{n!}{ {n}^{n} } \bigg]}^{ \dfrac{1}{n} }

On taking log on both sides, we get

\rm :\longmapsto\:logy = \displaystyle\lim_{n \to  \infty } \: log {\bigg[\dfrac{n!}{ {n}^{n} } \bigg]}^{ \dfrac{1}{n} }

We know,

\rm :\longmapsto\:logy =  \displaystyle\lim_{n \to  \infty } \dfrac{1}{n}\: log {\bigg[\dfrac{n!}{ {n}^{n} } \bigg]}

\rm :\longmapsto\:logy =  \displaystyle\lim_{n \to  \infty } \dfrac{1}{n}\: log {\bigg[\dfrac{n(n - 1)(n - 2) -  -  - 1}{ {n}.n.n -  -  - .n} \bigg]}

\rm :\longmapsto\:logy =  \displaystyle\lim_{n \to  \infty } \dfrac{1}{n}\: log {\bigg[\dfrac{n(n - 1)(n - 2) -  -  -[n - (n - 1)]}{ {n}.n.n -  -  - .n} \bigg]}

\rm :\longmapsto\:logy =  \displaystyle\lim_{n \to  \infty } \dfrac{1}{n}\: \sum_{r=0}^{n-1}log\bigg[\dfrac{n - r}{n} \bigg]

\rm :\longmapsto\:logy =  \displaystyle\lim_{n \to  \infty } \dfrac{1}{n}\: \sum_{r=0}^{n-1}log\bigg[1 - \dfrac{r}{n} \bigg]

Now, By using limit as a sum

\rm :\longmapsto\:logy =  \displaystyle\int_{0}^{1} \: log(1 - x) \: dx

Now, we know,

 \boxed{ \bf{ \:  \displaystyle\int_{0}^{a} \: f(x) \: dx \:  =  \: \displaystyle\int_{0}^{a} \: f(a - x) \: dx}}

So, using this identity, we get

\rm :\longmapsto\:logy =  \displaystyle\int_{0}^{1} \: log[1 - (1 - x)] \: dx

\rm :\longmapsto\:logy =  \displaystyle\int_{0}^{1} \: log[1 - 1  +  x] \: dx

\rm :\longmapsto\:logy =  \displaystyle\int_{0}^{1} \: logx \: dx

can be rewritten as

\rm :\longmapsto\:logy =  \displaystyle\int_{0}^{1} \: 1.logx \: dx -  -  - (1)

Consider,

 \red{\rm :\longmapsto\:\displaystyle\int1.logxdx}

Now, using By parts, we get

 \rm \: =  \: logx \displaystyle\int \: 1\: dx  - \displaystyle\int\bigg[\dfrac{d}{dx}logx\displaystyle\int1dx\bigg]dx

\rm \:  =  \:logx \: (x) - \displaystyle\int \: \dfrac{1}{x} \times x \: dx

\rm \:  =  \:logx \: (x) - \displaystyle\int \:  1 \: dx

\rm \:  =  \:x \: logx \:  -  \: x

 \red{\bf\implies \:\displaystyle\int \: logx \: dx \:  =  \: x \: logx \:  -  \: x}

On substituting this value in equation (1), we get

\rm :\longmapsto\:logy = \bigg[x \: logx \:  -  \: x \bigg]_{0}^{1}

\rm :\longmapsto\:logy = \bigg[1 \: log1 \:  -  \: 1 \bigg] - 0

\rm :\longmapsto\:logy = \bigg[1  \times 0 \:  -  \: 1 \bigg]

\rm :\longmapsto\:logy =  - 1

\bf\implies \:y =  {e}^{ - 1}

Hence,

\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }  \bf\:  {\bigg[\dfrac{n!}{ {n}^{n} } \bigg]}^{ \dfrac{1}{n} }  = \dfrac{1}{e}

Similar questions