Math, asked by michaelgimmy, 3 months ago

The Value of  \mathtt{\sqrt {3-2 \sqrt 2}} is

(a)  \mathtt{\sqrt 3 + \sqrt 2}
(b)  \mathtt{\sqrt 3 - \sqrt 2}
(c)  \mathtt{\sqrt 2 + 1}
(d)  \mathtt{\sqrt 2 - 1}

Answers

Answered by saanvigrover2007
2

  \large{\frak \green{To \: Solve :}}

 \mathtt{\sqrt {3-2 \sqrt 2}}

 \large{ \frak \red{Solution :}}

 \tt{ \implies\mathtt{\sqrt {3-2 \sqrt 2}} }

 \mathtt{ \implies\sqrt{(2^2) - 2 \sqrt{2} \times 1 +  {1}^{2}  }  }

\implies{ \mathtt{ \sqrt{ \sqrt{2} + 1 }^2 }}

\Huge{ \implies\pink{ \boxed{\underline{\underline{ \mathtt{ \sqrt{2} + 1 }}}}}}

Answered by Anonymous
1

Answer:

Hope it helps!! Mark this answer as brainliest if u found it useful and follow me for quick and accurate answers...

Step-by-step explanation:

\begin{gathered} \sqrt{3  -  2 \sqrt{2} } \\ \\ \sqrt{2  -  2 \sqrt{2} + 1} \\ \\ = \sqrt{ { (\sqrt{2} )}^{2} -  (2 \times 1 \times \sqrt{2}) + {1^2 }} \\ \\ = \sqrt{ {(\sqrt{2}  -  1) }^{2} } \\ \\ = \sqrt{2}   - 1 \end{gathered}

∴ Option d

Similar questions