Math, asked by jagtapmona51, 10 months ago

the value of
 \sin( \frac{\pi}{10} )  +  \sin( \frac{13\pi}{10} )
is ​

Answers

Answered by rishu6845
0

Answer:

√5 / 2

Step-by-step explanation:

Given---> Sin( π/10 ) + Sin( 3π/10 )

To find---> Value of given expression

Solution--->

Sin( π / 10 ) + Sin ( 3π / 10 )

= Sin ( 3π / 10 ) + Sin ( π / 10 )

We know that,

SinC + SinD = 2 Sin ( C + D / 2 ) Cos ( C - D / 2 ) applying it here

= 2 Sin{ ( 3π/10 + π/10) / 2} Cos { (3π/10 - π/10)/2}

= 2 Sin{( 4π /10) / 2} Cos{( 2π/10)/2}

= 2 Sin( 4π / 20 ) Cos ( 2π / 20 )

= 2 Sin ( π / 5 ) Cos ( π / 10 )

= 2 Sin ( 36° ) Cos (18° )

Putting value of Sin36° and Cos18° ,

= 2 {√(10 - 2√5 ) / 4 } { √(10 + 2√5 ) /4 }

= ( 2/ 16 ) √{ ( 10 - 2√5 ) ( 10 + 2√5 ) }

Applying a² - b² = ( a + b ) ( a - b ) , we get,

= ( 1/8) √{ ( 10 )² - ( 2√5 )² }

= ( 1 / 8 ) √( 100 - 4× 5 )

= √(100 - 20 ) / 8

= √80 / 8

= √(16 × 5) / 8

= 4 √5 / 8

= √5 / 2

Answered by Aɾꜱɦ
0

<font color =“orange”>

<body bgcolor= “purple” ><fontcolor=“white”>

{ \huge \bf{ \mid{ \overline{ \underline{Answer}}} \mid}}

  • √5/2

#answerwithquality #bal

Similar questions