the value of
Answers
Answer:
⋆
question
\tan( \frac{\pi}{4} + \theta) = \frac{ \cos\theta + \sin\theta }{ \cos\theta - \sin\theta }tan(
4
π
+θ)=
cosθ−sinθ
cosθ+sinθ
\begin{gathered}\huge \green{\underline{ solution}} \\ \\ \\using \: identities \: \implies \\ \red{ \star} \: tan \: \frac{ \pi}{4} = 1 \\ \red{ \star} \: tan \theta = \frac{sin \theta}{cos \theta} \\ \red{ \star} \: tan(x + y) = \frac{tanx + tany}{1 - tanx.tany} \\ \\ step - \: by \: step - \: explanation \\ \\ \star firstly \: taking \: left \: hand \: side \\ \implies \: tan( \frac{ \pi}{4} + \theta) \\ \\ using \: given \: identity \\ \implies \: \frac{tan \frac{ \pi}{4} + tan \theta}{1 - tan \frac{ \pi}{4}.tan \theta } \\ \\ \implies \: \frac{1 + \frac{sin \theta}{cos \theta} }{1 - \frac{sin \theta}{cos \theta} } \\ \\ \implies \red{taking \: LCM }\\ \\ \implies \frac{ \frac{cos \theta + sin \theta}{cos \theta} }{ \frac{cos \theta - sin \theta}{cos \theta} } \\ \\ \implies \: \frac{cos \theta + sin \theta}{cos \theta - sin \theta} \\ left \: hand \: side \: = right \: hand \: side \: \\ \\ hence\: proved\end{gathered}
solution
usingidentities⟹
⋆tan
4
π
=1
⋆tanθ=
cosθ
sinθ
⋆tan(x+y)=
1−tanx.tany
tanx+tany
step−bystep−explanation
⋆firstlytakinglefthandside
⟹tan(
4
π
+θ)
usinggivenidentity
⟹
1−tan
4
π
.tanθ
tan
4
π
+tanθ
⟹
1−
cosθ
sinθ
1+
cosθ
sinθ
⟹takingLCM
⟹
cosθ
cosθ−sinθ
cosθ
cosθ+sinθ
⟹
cosθ−sinθ
cosθ+sinθ
lefthandside=righthandside
henceproved
Step-by-step explanation:
Hope it helps you..
Answer:
answer for the given problem is given